Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124205    DOI: 10.1088/1674-1056/ac032e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding

Shuai Sun(孙帅)1,2, Wei Shi(史伟)1,2,†, Quan Sheng(盛泉)1,2, Shijie Fu(付士杰)1,2, Zhongbao Yan(闫忠宝)1,2, Shuai Zhang(张帅)1,2, Junxiang Zhang(张钧翔)1,2, Chaodu Shi(史朝督)1,2, Guizhong Zhang(张贵忠)1,2, and Jianquan Yao(姚建铨)1,2
1 Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
2 Key Laboratory of Optoelectronic Information Science and Technology(Ministry of Education), Tianjin University, Tianjin 300072, China
Abstract  Based on the index-induced mode coupling between the higher-order mode in core and the fundamental mode in cladding tubes, the single-mode operation can be realized in any antiresonant fibers (ARFs) when satisfying that the area ratio of cladding tube and core is about 0.46:1, and this area ratio also should be modified according to the shape and the number of cladding tubes. In the ARF with nodal core boundary, the mode in core also can couple with the mode in the wall of core boundary, which can further enhance the suppression of high-order mode. Accordingly, an ARF with conjoint semi-elliptical cladding tubes realizes a loss of higher-order mode larger than 30 dB/m; simultaneously, a loss of fundamental mode loss less than 0.4 dB/m.
Keywords:  terahertz      mode coupling      single-mode fiber  
Received:  19 April 2021      Revised:  14 May 2021      Accepted manuscript online:  20 May 2021
PACS:  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.-i (Fiber optics)  
  95.85.Gn (Far infrared (10-300 μm))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62075159), the National Key Research and Development Program of China (Grant No. 2017YFF0104603), the 111 Project of China (Grant No. B17031), and the Major Scientific and Technological Innovation Projects of Key Research and Development Plans in Shandong Province, CHina (Grant No. 2019JZZY020206).
Corresponding Authors:  Wei Shi     E-mail:  shiwei@tju.edu.cn

Cite this article: 

Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨) Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding 2021 Chin. Phys. B 30 124205

[1] Zhong K, Shi W, Xu D, Liu P, Wang Y, Mei J, Yan C, Fu S and Yao J 2017 Sci. China- Technol. Sci. 60 1801
[2] Yu F and Knight J C 2016 IEEE J. Sel. Top. Quantum 22 146
[3] Belardi W and Knight J C 2013 Opt. Express 21 21912
[4] Vincetti L 2009 Opt. Fiber Technol. 15 398
[5] Poletti F 2014 Opt. Express 22 23807
[6] Gao S F, Wang Y Y, Ding W, Jiang D L, Gu S, Zhang X and Wang P 2018 Nat. Commun. 9 2828
[7] Nampoothiri A V V, Jones A M, Baumgart B, Washburn B R, Fourcadedutin C, Mao C, Benabid F, Corwin K L, Alharbi M and Dadashzadeh N J O M E 2014 Opt. Mater. Express 2 948
[8] Jones A M, Nampoothiri A V V, Ratanavis A, et al. 2011 Opt. Express 19 2309
[9] Habib M S, Bang O and Bache M 2016 Opt. Express 24 8429
[10] Gao S F, Wang Y Y, Liu X L, Ding W and Wang P 2016 Opt. Express 24 14801
[11] Meng F C, Liu B W, Li Y F, Wang C Y and Hu M L 2017 IEEE Photon. J. 9 1
[12] Yan S, Lou S, Wang X, Zhao T and Zhang W 2018 Opt. Quantum Electron. 50 162
[13] Yu T Y, Liu X and Fan Z W 2018 IEEE Photon. J. 10 1
[14] Kolyadin A N, Kosolapov A F, Pryamikov A D, Biriukov A S, Plotnichenko V G and Dianov E M 2013 Opt. Express 21 9514
[15] Tuchin V V, Fedulova E V, Genina E A, Nazarov M M, Angeluts A A, Meglinski I V, Kitai M S, Sokolov V I and Shkurinov A P 2011 "Studying of dielectric properties of polymers in the terahertz frequency range", Saratov Fall Meeting 2011:Optical Technologies in Biophysics and Medicine XIII, 2012
[16] Anthony J, Leonhardt R, Leon Saval S G and Argyros A 2011 Opt. Express 19 18470
[17] Islam M S, Cordeiro C M B, Franco M A R, Sultana J, Cruz A L S and Abbott D 2020 Opt. Express 28 16089
[18] Ji J, Kong D, Ma T, He X, Chen Q and Wang L 2014 Infrared and Laser Engineering 43 1909
[19] Pryamikov A D, Biriukov A S, Kosolapov A F, Plotnichenko V G and Dianov E M 2011 Opt. Express 19 1441
[20] Huang X, Qi W, Ho D, Yong K T, Luan F and Yoo S 2016 Opt. Express 24 7670
[21] Ventura A, Hayashi J G, Cimek J, Jasion G, Janicek P, Slimen F B, White N, Fu Q, Xu L, Sakr H, Wheeler N V, Richardson D J and Poletti F 2020 Opt. Express 28 16542
[22] Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L and Liu W 2016 Opt. Express 24 22454
[23] Alice C, Cristiano C and Marcos F J F 2018 Fibers 6 43
[24] van Putten L D, Gorecki J, Numkam Fokoua E, Apostolopoulos V and Poletti F 2018 Appl. Opt. 57 3953
[25] Uebel P, Günendi M C, Frosz M H, Ahmed G, Edavalath N N, Ménard J M and Russell P S J 2015 "A broad band robustly single mode hollow core PCF by resonant filtering of higher order modes", Frontiers in Optics 2015, Optical Society of America, San Jose, California 2015, FW6C.2
[26] Yu F, Xu M and Knight J C 2016 Opt Express 24 12969
[27] Edavalath N N, Gunendi M C, Beravat R, Wong G K L, Frosz M H, Menard J M and St J R P 2017 Opt. Lett. 42 2074
[28] Habib M S, Antonio Lopez J E, Markos C, Schulzgen A and Amezcua Correa R 2019 Opt. Express 27 3824
[29] Yan S, Lian Z, Lou S, Wang X, Zhang W and Tang Z 2020 Opt. Quantum Electron 52 269
[30] Sun S, Shi W, Sheng Q, Zhang G, Zhang Y, Yan Z and Yao J 2020 "Investigation of single mode anti resonant hollow-core THz fibers", 2020, Optical Society of America, San Jose, California 2020, 112791Y
[1] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[2] Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths
Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2022, 31(2): 028701.
[3] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[4] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[5] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[6] High performance infrared detectors compatible with CMOS-circuit process
Chao Wang(王超), Ning Li(李宁), Ning Dai(戴宁), Wang-Zhou Shi(石旺舟), Gu-Jin Hu(胡古今), and He Zhu(朱贺). Chin. Phys. B, 2021, 30(5): 050702.
[7] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[8] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[9] Actively tunable dual-broadband graphene-based terahertz metamaterial absorber
Dan Hu(胡丹), Tian-Hua Meng(孟田华), Hong-Yan Wang(王红燕), and Mai-Xia Fu(付麦霞). Chin. Phys. B, 2021, 30(12): 126101.
[10] A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines
Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏). Chin. Phys. B, 2021, 30(12): 120701.
[11] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[12] Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing
Ling Xu(徐玲), Yun Shen(沈云), Liangliang Gu(顾亮亮), Yin Li(李寅), Xiaohua Deng(邓晓华), Zhifu Wei(魏之傅), Jianwei Xu(徐建伟), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2021, 30(11): 118702.
[13] Optically tuned dielectric characteristics of SrTiO3/Si thin film in the terahertz range
Bin Zou(邹斌), Qing-Qing Li(李晴晴), Yu-Ping Yang(杨玉平), and Hai-Zhong Guo(郭海中). Chin. Phys. B, 2021, 30(10): 107802.
[14] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[15] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
No Suggested Reading articles found!