Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 095201    DOI: 10.1088/1674-1056/abefc7
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision

Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革)
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
Abstract  A Monte Carlo implicit simulation program, Implicit Stratonovich Stochastic Differential Equations (ISSDE), is developed for solving stochastic differential equations (SDEs) that describe plasmas with Coulomb collision. The basic idea of the program is the stochastic equivalence between the Fokker-Planck equation and the Stratonovich SDEs. The splitting method is used to increase the numerical stability of the algorithm for dynamics of charged particles with Coulomb collision. The cases of Lorentzian plasma, Maxwellian plasma and arbitrary distribution function of background plasma have been considered. The adoption of the implicit midpoint method guarantees exactly the energy conservation for the diffusion term and thus improves the numerical stability compared with conventional Runge-Kutta methods. ISSDE is built with C++ and has standard interfaces and extensible modules. The slowing down processes of electron beams in unmagnetized plasma and relaxation process in magnetized plasma are studied using the ISSDE, which shows its correctness and reliability.
Keywords:  Fokker-Planck equation      Stratonovich SDE      implicit      slowing down process  
Received:  16 November 2020      Revised:  15 March 2021      Accepted manuscript online:  18 March 2021
PACS:  52.20.Fs (Electron collisions)  
  52.25.Xz (Magnetized plasmas)  
  52.40.Mj (Particle beam interactions in plasmas)  
  52.50.Gj (Plasma heating by particle beams)  
Fund: Project supported by the National MCF Energy R&D Program of China (Grant No. 2018YFE0304100), the National Key Research and Development Program of China (Grant Nos. 2016YFA0400600, 2016YFA0400601, and 2016YFA0400602), and the National Natural Science Foundation of China (Grant Nos. NSFC-11805273 and NSFC-11905220).
Corresponding Authors:  Jianyuan Xiao     E-mail:  xiaojy@ustc.edu.cn

Cite this article: 

Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革) ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision 2021 Chin. Phys. B 30 095201

[1] Janssen G C, Bonnie J, Granneman E, Krementsov V and Hopman H 1984 Phys. Fluids 27 726
[2] Robertson S and Fisher A 1980 J. Appl. Phys. 51 4094
[3] Menon M M 1981 Proc. IEEE Inst. Electr. Electron Eng. 69 1012
[4] Ohnishi M and Ao N 1978 Nucl. Fusion 18 859
[5] Anderson D 1982 Phys. Fluids 25 353
[6] Thomas A G R, Tzoufras M, Robinson A P L, Kingham R J, Ridgers C P, Sherlock M and Bell A R 2012 J. Comput. Phys. 231 1051
[7] Rosin M S, Ricketson L F, Dimits A M, Caflisch R E and Cohen B I 2014 J. Comput. Phys. 274 140
[8] Kerbel G and McCoy M 1985 Phys. Fluids 28 3629
[9] Epperlein E, Rickard G and Bell A 1988 Comput. Phys. Commun. 52 7
[10] Morel J 1981 Nucl. Sci. Eng. 79 340
[11] Ricketson L, Rosin M, Caflisch R and Dimits 2014 J. Comput. Phys. 273 77
[12] Bossy M, Champagnat N, Maire S and Talay D 2010 ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer. 44 997
[13] Capocelli R M 1971 Kybernetik 8 214
[14] Markov Y G and Sinitsin I N 2004 Cosmic. Res. 42 72
[15] Yin L and Ao P 2006 J. Phys. A: Math. Gen. 39 8593
[16] Ao P, Kwon C and Qian H 2007 Complexity 12 19
[17] Shi J, Chen T, Yuan R, Yuan B and Ao P 2012 J. Stat. Phys. 148 579
[18] Yuan R and Ao P 2012 J. Stat. Mech. 2012 P07010
[19] Takizuka T and Abe H 1977 J. Comput. Phys. 25 205
[20] Eriksson L G 1994 Phys. Plasmas 1 308
[21] Eriksson L G, Mantsinen M J, Hellsten T and Carlsson J 1999 Phys. Plasmas 6 513
[22] Cadjan M G and Ivanov M F 1999 J. Plasma Phys. 61 89
[23] Sherlock M 2008 J. Comput. Phys. 227 2286
[24] Zhang G N and Del-Castillo-Negrete D 2017 Phys. Plasmas 24 092511
[25] Stevens D E 2016 Technical Report: A New Approach to Charged Particle Slowing Down and Dispersion (U.S. Department of Energy Office of Scientific and Technical Information)
[26] Kloeden P E and Platen E 2010 Numerical Solution of Stochastic Differential Equations (Springer Science & Business Media) p. 99
[27] Stratonovich R L 1966 SIAM J. Control 4 362
[28] Kupferman R, Pavliotis G A, Stuart A M 2004 Phys. Rev. E 70 036120
[29] Mannella R and McClintock P V E 2012 Fluct. Noise Lett. 11 1240010
[30] Rosenbluth M N, MacDonald W M and Judd D L 1957 Phys. Rev. 107 1
[31] Öttinger H C 1966 Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms (Berlin: Springer) p. 112
[32] Cohen R S, Spitzer J L and Routly P M 1950 Phys. Rev. 80 230
[33] Xiao J, Liu J, Qin H, Yu Z and Xiang N 2015 Phys. Plasmas 22 092305
[34] Ben-Israel A 1966 J. Math. Anal. Appl 15 243
[35] Ortega J M and Rheinboldt W C 1970 SIAM: Iterative Solution of Nonlinear Equations in Several Variables pp. 30, 181
[36] Björck Å 1996 SIAM: Numerical Methods for Least Squares Problems p. 342
[37] Broyden C G 1965 Math. Comput. 19 577
[38] He Y, Qin H, Sun Y J, Xiao J Y, Zhang R L and Liu J 2015 Phys. Plasmas 22 124503
[39] The Programming Language Lua http://www.lua.org
[40] The HDF5 Library & File Format - The HDF Group https://www.hdfgroup.org/solutions/hdf5/
[41] Goebel D M and Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thrusters (New York: John Wiley & Sons) chap. 1 p. 479
[42] Huba J D 2007 NRL Plasma Formulary (Defense Technical Information Center) p 37
[43] Burrage P M 1999 Runge-Kutta Methods for Stochastic Differential Equation (Australia: The University of Queensland Brisbane Queensland) p. 67
[44] Burrage K and Burrage P 1999 Physica D 133 34
[45] Squire J and Qin H and Tang W M 2012 Phys. Plasmas 19 084501
[46] Kraus M 2013 arXiv:1307.5665
[47] Xiao J Y, Liu J, Qin H and Yu Z 2013 Phys. Plasmas 20 102517
[48] Xiao J Y, Qin H, Liu J, He Y, Zhang R L and Sun Y J 2015 Phys. Plasmas 22 112504
[49] Kraus M, Kormann K, Morrison P J and Sonnendrücker E 2017 J. Plasma Phys. 83 905830401
[50] Klimontovich Y L 1990 Physica A 163 515
[51] Klimontovich Y L 1992 Physica A 182 121
[52] Ao P 2008 Dyn. Commun. Theor. Phys. 49 1073
[53] Hütter M and Öttinger H C 1998 Faraday Trans. 94 1403
[1] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[2] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[3] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[4] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[5] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[6] Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique
Tianmin Wu (吴天敏), Tianjun Wang (王天骏), Xian Chen(陈娴), Bin Fang(方彬), Ruiting Zhang(张睿挺), Wei Zhuang(庄巍). Chin. Phys. B, 2016, 25(1): 018201.
[7] Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown
Wang Hong-Yu (王虹宇), Sun Peng (孙鹏), Jiang Wei (姜巍), Zhou Jie (周杰), Xie Bai-Song (谢柏松). Chin. Phys. B, 2015, 24(6): 065207.
[8] Compact implicit integration factor methods for some complex-valued nonlinear equations
Zhang Rong-Pei(张荣培) . Chin. Phys. B, 2012, 21(4): 040205.
[9] Time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise
Guo Yong-Feng (郭永峰), Tan Jian-Guo (谭建国). Chin. Phys. B, 2012, 21(12): 120501.
[10] Full-vectorial finite-difference beam propagation method based on the modified alternating direction implicit method
Xiao Jin-Biao(肖金标) and Sun Xiao-Han(孙小菡). Chin. Phys. B, 2006, 15(8): 1824-1830.
[11] Fokker-planck study of tokamak electron cyclotron resonance heating
Shi Bing-Ren (石秉仁), Long Yong-Xing (龙永兴), Dong Jia-Qi (董家齐), Li Wen-Zhong (郦文忠), Jiao Yi-Ming (焦一鸣), Wang Ai-Ke (王爱科). Chin. Phys. B, 2003, 12(11): 1251-1256.
No Suggested Reading articles found!