Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040205    DOI: 10.1088/1674-1056/21/4/040205
GENERAL Prev   Next  

Compact implicit integration factor methods for some complex-valued nonlinear equations

Zhang Rong-Pei(张荣培)
School of Sciences, Liaoning ShiHua University, Fushun 113001, China
Abstract  The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear Schrödinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
Keywords:  compact implicit integration factor method      finite difference      nonlinear Schr?dinger equation      complex Ginzburg-Landau equation  
Received:  27 September 2011      Revised:  31 October 2011      Accepted manuscript online: 
PACS:  02.70.Bf (Finite-difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
  05.45.Yv (Solitons)  
Corresponding Authors:  Zhang Rong-Pei, E-mail:rongpeizhang@163.com     E-mail:  rongpeizhang@163.com

Cite this article: 

Zhang Rong-Pei(张荣培) Compact implicit integration factor methods for some complex-valued nonlinear equations 2012 Chin. Phys. B 21 040205

[1] Gottlieb S, Shu C W and Tadmor E 2001 SIAM Rev. 43 89
[2] Ascjer U M, Ruuth S J and Spiteri R J 1997 Appl. Numer. Math. 25 151
[3] Dutt A, Greengard L and Rokhlin V 2000 BIT 40 241
[4] Cox S M and Matthews P C 2002 J. Comput. Phys. 176 430
[5] Nie Q, Zhang Y T and Zhao R 2006 J. Comput. Phys. 214 521
[6] Nie Q, Wan F, Zhang Y T and Liu X F 2008 J. Comput. Phys. 227 5238
[7] Gao Z and Xie S S 2011 Appl. Numer. Math. 61 593
[8] Xu Y and Shu C W 2005 J. Comput. Phys. 205 72
[9] de la Hoz F and Vadillo F 2008 Comput. Phys. Commun. 179 449
[10] Zhou C T, Yu M Y and He X T 2006 Phys. Rev. E 73 026209
[11] Ding W S, Xi L and Liu L H 2008 Acta Phys. Sin. 57 7705 (in Chinese)
[12] Feng J, Xu W C, Li S X, Chen W C, Song F, Shen M C and Liu S H 2007 Acta Phys. Sin. 56 5835 (in Chinese)
[13] Shi B C and Guo Z L 2009 Phys. Rev. E 79 016701
[14] Liao H Y, Zhou S P and Shi X Y 2004 Chin. Phys. 13 737
[15] Winiecki T and Adams C S 2002 J. Comput. Phys. 179 127
[16] Du Q 1994 Comp. Math. Appl. 27 119
[1] Dynamics of high-frequency modulated waves in a nonlinear dissipative continuous bi-inductance network
S M Ngounou and F B Pelap. Chin. Phys. B, 2021, 30(6): 060504.
[2] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[3] Nonlinear continuous bi-inductance electrical line with dissipative elements: Dynamics of the low frequency modulated waves
S M Ngounou, F B Pelap. Chin. Phys. B, 2020, 29(4): 040502.
[4] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[5] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟). Chin. Phys. B, 2019, 28(10): 100201.
[6] Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique
Guang-Ming Guo(郭广明), Hong Liu(刘洪). Chin. Phys. B, 2017, 26(6): 064701.
[7] A simulation study on p-doping level of polymer host material in P3HT: PCBM bulk heterojunction solar cells
Hossein Movla, Mohammad Babazadeh. Chin. Phys. B, 2017, 26(4): 048802.
[8] Different optical properties in different periodic slot cavity geometrical morphologies
Jing Zhou(周静), Meng Shen(沈萌), Lan Du(杜澜), Caisong Deng(邓彩松), Haibin Ni(倪海彬), Ming Wang(王鸣). Chin. Phys. B, 2016, 25(9): 097301.
[9] Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays
Yuan Yu-Yang (袁宇阳), Yuan Zong-Heng (袁纵横), Li Xiao-Nan (李骁男), Wu Jun (吴军), Zhang Wen-Tao (张文涛), Ye Song (叶松). Chin. Phys. B, 2015, 24(7): 074206.
[10] Numerical investigation of the enhanced unidirectional surface plasmon polaritons generator
Zhang Zhi-Dong (张志东), Wang Hong-Yan (王红艳), Zhang Zhong-Yue (张中月), Wang Hui (王辉). Chin. Phys. B, 2014, 23(1): 017801.
[11] A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide
M Afshari Bavil, Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2013, 22(4): 047808.
[12] Melting phenomenon in magneto hydro-dynamics steady flow and heat transfer over a moving surfacein the presence of thermal radiation
Reda G. Abdel-Rahman, M. M. Khader, Ahmed M. Megahed. Chin. Phys. B, 2013, 22(3): 030202.
[13] Solitons for the cubic–quintic nonlinear Schrödinger equation with varying coefficients
Chen Yuan-Ming(陈元明), Ma Song-Hua(马松华), and Ma Zheng-Yi(马正义) . Chin. Phys. B, 2012, 21(5): 050510.
[14] A functional probe with bowtie aperture and bull's eye structure for nanolithograph
Wang Shuo (王硕), Li Xu-Feng (李旭峰), Wang Qiao (王乔), Guo Ying-Yan (郭英楠), Pan Shi (潘石). Chin. Phys. B, 2012, 21(10): 107302.
[15] Thermal analysis of intense femtosecond laser ablation of aluminum
Hu Hao-Feng(胡浩丰), Ji Yang(吉扬), Hu Yang(胡阳), Ding Xiao-Yan(丁晓雁), Liu Xian-Wen(刘贤文), Guo Jing-Hui(郭静慧), Wang Xiao-Lei(王晓雷), and Zhai Hong-Chen(翟宏琛) . Chin. Phys. B, 2011, 20(4): 044204.
No Suggested Reading articles found!