Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 095202    DOI: 10.1088/1674-1056/abf641
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Unstable mode of ion-acoustic waves with two temperature q-nonextensive distributed electrons

S Bukhari1,†, Nadeem Hussain1, and S Ali1,2
1 Department of Physics, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Azad Kashmir, Pakistan;
2 National Center for Physics at QAU Campus, Shahdra Valley Road, Islamabad 44000, Pakistan
Abstract  The linear characteristics of the unstable mode of ion-acoustic waves are examined in an electrostatic electron-ion plasma composed of streaming hot electrons, non-streaming cold electrons and dynamical positive ions. The plasma under consideration is modeled by using a non-gyrotropic nonextensive q-distribution function in which the free energy source for wave excitation is provided by the relative directed motion of streaming hot electrons with respect to the other plasma species. In the frame work of kinetic model, a linearized set of Vlasov-Poisson's equations are solved to obtain the analytical expressions for dispersion relation and Landau damping rate. The threshold condition for the unstable ion-acoustic wave is derived to assess the stability of the wave in the presence of nonextensive effects. Growth in the wave spectrum and nontrivial effects of q-nonextensive parameter on the ion-acoustic waves can be of interest for the readers in the regions of Saturns's magnetosphere.
Keywords:  non-gyrotropic      nonextensivity      Saturns's magnetosphere  
Received:  23 October 2020      Revised:  23 March 2021      Accepted manuscript online:  09 April 2021
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
Corresponding Authors:  S Bukhari     E-mail:  shujaht.physics@gmail.com

Cite this article: 

S Bukhari, Nadeem Hussain, and S Ali Unstable mode of ion-acoustic waves with two temperature q-nonextensive distributed electrons 2021 Chin. Phys. B 30 095202

[1] Tonks T and Langmuir I 1929 Phys. Rev. 33 195
[2] Revans R W 1933 Phys. Rev. 44 798
[3] Wong A Y, Motley R W and D'Angelo N 1964 Phys. Rev. 133 A436
[4] Song B, D'Angelo N and Merlino R L 1991 Phys. Fluids B 3 284
[5] Bychenkov V Y, Myatt J, Rozmus W and Tikhonchuk V T 1995 Phys. Rev. E 52 6759
[6] Mushtaq A and Shah H A 2006 Phys. Plasmas 13 012303
[7] Mandal D and Sharma D 2016 J. Phys.: Conf. Ser. 759 012068
[8] Jackson E A 1960 Phys. Fluids 3 786
[9] Bernstein I B, Frieman E A, Kulsrud R M and Rosenbluth M X 1960 Phys. Fluids 3 136
[10] Fried B D and Gould R W 1961 Phys. Fluids 4 139
[11] Bhadra D and Varma R K 1964 Phys. Fluids 7 1091
[12] Buti B 1968 Phys. Rev. 165 195
[13] Jones W D, Lee A, Gleman S M and Doucet H J 1975 Phys. Rev. Lett. 35 1349
[14] Nakamura Y 1987 J. Plasma Phys. 38 461
[15] Bukhari S, Ali S and Rafique M 2018 Planet. Space Sci. 159 11
[16] Dubouloz N, Pottelette R, Malingre M and Treumann R A 1991 Geophys. Res. Lett. 18 155
[17] Pottelette R, Ergun R E, Treumann R A, Berthomier M, Carlson C W, McFadden J P and Roth I 1999 Geophys. Res. Lett. 26 2629
[18] Defler H and Simonen T C 1969 Phys. Fluids 12 260
[19] Henery D and Treumann R A 1972 J. Plasma Phys. 8 311
[20] Sittler E C J, Ogilvie K W and Scudder J D 1983 Geophys. Res. 88 8847
[21] Young D T et al. 2005 Science 307 1262
[22] Yadav L L, Tiwari R S, Maheshwari K P and Sharma S R 1995 Phys. Rev. E 52 3045
[23] Rao N N and Shukla P K 1997 Phys. Plasmas 4 636
[24] Kourakis I and Shukla P K 2003 J. Phys. A: Math. Gen. 36 11901
[25] Barbosa D D and Kurth W S 1993 J. Geophys. Res. 98 9351
[26] Tsallis C 1988 J. Stat. Phys. 52 479
[27] Tsallis C 1994 New Trends in Magnetism, Magnetic Materials and Their Applications, edited by Moran-Lopez J L and Sanchez J M (New York: Plenum Press)
[28] Lima J A S, Silva R and Santos J 2000 Phys. Rev. E 61 3260
[29] Liu J M, Groot J S D, Matte J P, Johnston T W and Drake R P 1994 Phys. Rev. Lett. 72 2717
[30] Chen X C and Li X Q 2012 Phys. Rev. E 86 068401
[31] Saberian E and Kalejahi A E 2013 Phys. Rev. E 87 053112
[32] Du J L 2004 Phys. Lett. A 329 262
[33] Du J L 2004 Europhys. Lett. 67 893
[34] Safa N N, Ghomi H and Niknam A R 2015 J. Plasma Phys. 81 905810303
[35] Feldman WC, Asbridge J R, Bame S J, Montgomery M D and Gary S P 1975 J. Geophys. Res. 80 4181
[36] Maksimovic M, Pierrard V and Riley P 1997 Geophys. Res. Lett. 24 1151
[37] Zouganelis I 2008 J. Geophys. Res. 113 A08111
[38] Beck C 2001 Phys. Rev. Lett. 87 180601
[39] Boghosian B M 1996 Phys. Rev. E 53 4754
[40] Tsallis C and de-Souza A M C 1997 Phys. Lett. A 235 444
[41] Lavagno L, Kaniadakis G, Monteiro M R, Quarati P and Tsallis C 1998 Astrophys. Lett. Commun. 35 449
[42] Munoz V 2006 Nonlin. Process. Geophys. 13 237
[43] Silva R, Alcaniz J A and Lima J A S 2005 Physica A 356 509
[44] Shaikh S, Khan A and Bhatia P K 2008 Phys. Lett. A 372 1451
[45] Valentini F 2005 Phys. Plasmas 12 072106
[46] Liu Z, Liu L and Du J 2009 Phys. Plasmas 16 072111
[47] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasmas Physics (Bristol: IoP Publishing)
[48] Silva J R, Plastino A R and Lima J A S 1998 Phys. Lett. A 249 401
[49] Curado E M F 1999 Braz. J. Phys. 29 36
[50] Gurnett D A and Bhattacharjee A 2005 Introduction to Plasma Physics with Space and Laboratory Applications (Cambridge: Cambridge University Press)
[51] Liu S Q, Qiu H B and Li X Q 2012 Physica A 391 5795
[52] Ergun R E et al. 1998 Geophys. Res. Lett. 25 2061
[53] Delory G T et al. 1998 Geophys. Res. Lett. 25 2069
[54] McFadden J P et al. 2003 J. Geophys. Res. 108 8018
[55] Bostrom R 1988 Phys. Rev. Lett. 61 82
[56] Matsumoto H et al. 1994 Geophys. Res. Lett. 21 2915
[57] Franz J R et al. 1998 Geophys. Res. Lett. 25 1277
[58] Schippers P et al. 2018 J. Geophys. Res. 113 A07208
[59] Koen E J, Collier A B, Maharaj S K and Hellberg M A 2014 Phys. Plasmas 21 072122
[60] Masters A et al. 2010 J. Geophys. Res. 115 A07225
[61] Baluku T K, Hellberg M A, Mace R L, 2011 J. Geophys. Res. 116 A04227
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[3] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[4] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[5] Physical properties of relativistic electron beam during long-range propagation in space plasma environment
Bi-Xi Xue(薛碧曦), Jian-Hong Hao(郝建红), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2021, 30(10): 104103.
[6] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[7] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[8] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[9] Damped electrostatic ion acoustic solitary wave structures in quantum plasmas with Bohm potential and spin effects
S Hussain, H Hasnain, Mahnaz Q. Haseeb. Chin. Phys. B, 2019, 28(1): 015202.
[10] Double-slit interference of a relativistic vortex laser
Hao Zhang(张浩), Bai-Fei Shen(沈百飞), Lin-Gang Zhang(张林港). Chin. Phys. B, 2019, 28(1): 014702.
[11] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[12] Upstream ion wave excitation in an ion-beam-plasma system
Kai-Yang Yi(弋开阳), Jin-Xiu Ma(马锦秀), Zi-An Wei(卫子安), Zheng-Yuan Li(李政元). Chin. Phys. B, 2018, 27(5): 055201.
[13] Plural interactions of space charge wave harmonics during the development of two-stream instability
Victor Kulish, Alexander Lysenko, Michael Rombovsky, Vitaliy Koval, Iurii Volk. Chin. Phys. B, 2015, 24(9): 095201.
[14] Landau damping in a bounded magnetized plasma column
H. Zakeri-Khatir, F. M. Aghamir. Chin. Phys. B, 2015, 24(2): 025201.
[15] Parametric instabilities in single-walled carbon nanotubes
He Cai-Xia (何彩霞), Jian Yue (简粤), Qi Xiu-Ying (祁秀英), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2014, 23(2): 025202.
No Suggested Reading articles found!