Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 065207    DOI: 10.1088/1674-1056/24/6/065207
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown

Wang Hong-Yu (王虹宇)a, Sun Peng (孙鹏)a, Jiang Wei (姜巍)b, Zhou Jie (周杰)c, Xie Bai-Song (谢柏松)d
a School of Physics Science and Technology, Anshan Normal University, Anshan 114005, China;
b School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
c Southwest Institute of Technical Physics, Chengdu 610041, China;
d College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  An implicit electrostatic particle-in-cell/Monte Carlo (PIC/MC) algorithm is developed for the magnetized discharging device simulation. The inductive driving force can be considered. The direct implicit PIC algorithm (DIPIC) and energy conservation scheme are applied together and the grid heating can be eliminated in most cases. A tensor-susceptibility Poisson equation is constructed. Its discrete form is made up by a hybrid scheme in one-dimensional (1D) and two-dimensional (2D) cylindrical systems. A semi-coarsening multigrid method is used to solve the discrete system. The algorithm is applied to simulate the cylindrical magnetized target fusion (MTF) pre-ionization process and get qualitatively correct results. The potential application of the algorithm is discussed briefly.
Keywords:  particle-in-cell/Monte Carlo      implicit simulation      discharging simulation  
Received:  28 October 2014      Revised:  23 January 2015      Accepted manuscript online: 
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.27.Aj (Single-component, electron-positive-ion plasmas)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275007, 11105057, 11175023, and 11275039). One of the author (Wang H Y) is supported by Program for Liaoning Excellent Talents in University (Grant No. LJQ2012098).
Corresponding Authors:  Wang Hong-Yu     E-mail:  why@btitgroup.com
About author:  52.80.Pi; 52.27.Aj; 52.65.Rr

Cite this article: 

Wang Hong-Yu (王虹宇), Sun Peng (孙鹏), Jiang Wei (姜巍), Zhou Jie (周杰), Xie Bai-Song (谢柏松) Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown 2015 Chin. Phys. B 24 065207

[1] Rauf S 2003 IEEE Trans. Plasma Sci. 31 471
[2] Lee S H, You S J, Chang H Y and Lee J K 2007 J. Vac. Sci. Technol. A 25 455
[3] Lee J K, Yang I D and Whang K M 1996 Plasma Source Sci. Tech. 5 383
[4] Fan Y, Zhou Y, Sun J Z, Thomas S and Wang D Z 2013 Phys. Plasma 20 103507
[5] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley)
[6] Turner M M, Derzsi A, Donkó Z, Eremin D, Kelly S J, Lafleur T and Mussenbrock T 2013 Phys. Plasma 20 013507
[7] Vender D and Boswell R W 1990 IEEE Trans. Plasma Sci. 18 725
[8] Surendra M, Graves D B and Morey I J 1990 Appl. Phys. Lett. 56 1022
[9] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
[10] Zhao H Y and Mu Z X 2008 Chin. Phys. B 17 1475
[11] Shi F, Zhang L L and Wang D Z 2009 Chin. Phys. B 18 1674
[12] Liu C S, Han H Y, Peng X Q, Chang Y and Wang D Z 2010 Chin. Phys. B 19 035201
[13] Wang H H, Liu D G, Meng L, Liu L Q, Yang C, Peng K and Xia M Z 2013 Acta Phys. Sin. 62 015207 (in Chinese)
[14] Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231
[15] Welch D R, Rose D V, Clark R E, Genoni T C and Hughes T P 2004 Comput. Phys. Commun. 164 183
[16] Petrov G M and Davis J 2011 Phys. Plasma 18 073102
[17] Markidis S, Lapenta G and Mathe R 2010 Math. Comput. Simul. 80 1509
[18] Lieberman M A, Booth J P, Chabert P, Rax J M and Turner M M 2002 Plasma Sources Sci. Technol. 11 283
[19] Zhang Y R, Xu X, Zhao S X, Bogaerts A and Wang Y N 2010 Phys. Plasma 17 113512
[20] Kim J Y, Lee H C, Kim Y D, Kim Y C and Chung C W 2013 Phys. Plasma 20 101612
[21] Taccetti J M, Intrator T P, Wurden G A 2003 Rev. Sci. Instrm. 74 4314
[22] Wang H Y, Jiang W, Sun P and Kong L B 2014 Chin. Phys. B 23 035204
[23] Welch D R, Rose D V, Cuneo M E, Campbell R B and Mehlhorn T A 2006 Phys. Plasma 13 063105
[24] Wang H Y, Jiang W and Wang Y N 2009 Comput. Phys. Commun. 180 1305
[25] Vahedi V, DiPeso G and Birdsall C K, et al. 1993 Plasma Source Sci. Technol. 2 21
[26] Wang H Y, Jiang W and Wang Y N 2010 Plasma Source Sci. Technol. 19 045023
[27] Jiang W, Xu X, Dai Z L and Wang Y N 2008 Phys. Plasma 15 033502
[28] Lapenta G 2002 J. Comput. Phys. 181 317
[29] Takekida H and Nanbu K 2005 J. Phys. D: Appl. Phys. 38 3461
[1] Three-dimensional PIC/MCC simulation of electron deposition in JAEA 10 A ion sources
Yang Chao (杨超), Yin Mao-Wei (印茂伟), Shang Li-Ping (尚丽平), Wei Ai-Yong (韦爱勇). Chin. Phys. B, 2014, 23(9): 095201.
[2] On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation:Benchmark and application to the radio frequency discharges
Wang Hong-Yu (王虹宇), Jiang Wei (姜巍), Sun Peng (孙鹏), Kong Ling-Bao (孔令宝). Chin. Phys. B, 2014, 23(3): 035204.
[3] Microwave propagation with the gas breakdown
Wang Hui-Hui (王辉辉), Liu Da-Gang (刘大刚), Liu La-Qun (刘腊群), Meng Lin (蒙林). Chin. Phys. B, 2014, 23(11): 115101.
No Suggested Reading articles found!