Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120501    DOI: 10.1088/1674-1056/21/12/120501
GENERAL Prev   Next  

Time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise

Guo Yong-Feng (郭永峰), Tan Jian-Guo (谭建国)
School of Science, Tianjin Polytechnic University, Tianjin 300387, China
Abstract  This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise. The dimension of Fokker-Planck equation is reduced by the linear transformation. The exact expression of the time dependence of information entropy is obtained based on the definition of Shannon's information entropy. The relationships between the properties of dissipative parameters, system singularity strength parameter, quasimonochromatic noise, and their effects on information entropy are discussed.
Keywords:  information entropy      quasimonochromatic noise      Fokker-Planck equation      stochastic system with double singularities  
Received:  06 April 2012      Revised:  18 May 2012      Accepted manuscript online: 
PACS:  05.20.-y (Classical statistical mechanics)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11102132).
Corresponding Authors:  Guo Yong-Feng     E-mail:  guoyongfeng@mail.nwpu.edu.cn

Cite this article: 

Guo Yong-Feng (郭永峰), Tan Jian-Guo (谭建国) Time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise 2012 Chin. Phys. B 21 120501

[1] Denisov S I and Horsthemke W 2002 Phys. Rev. E 65 031105
[2] Dykman M I, Mannella R, McClintock P V E, Stein N D and Stocks N G 1993 Phys. Rev. E 47 3996
[3] Dykman M I, McClintock P V E, Stein N D and Stocks N G 1991 Phys. Rev. Lett. 67 933
[4] Mangioni S, Deza R, Wio H S and Toral R 1997 Phys. Rev. Lett. 79 2389
[5] Li J H and Huang Z Q 1996 Phys. Rev. E 53 3315
[6] Gammaitoni L, Hanggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[7] Luo X Q and Zhu S Q 2003 Phys. Rev. E 67 021104
[8] Jia Y, Yu S N and Li J R 2000 Phys. Rev. E 62 1869
[9] Li R, Hu G, Yang C Y, Wen X D, Qing G R and Zhu H J 1995 Phys. Rev. E 51 3964
[10] Xu W, Xie W X, Cai L and Tang Y N 2007 Physica A 384 273
[11] Guo Y F, Xu W, Liu H T, Li D X and Wang L 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 522
[12] Xie W X, Xu W, Cai L and Jin Y F 2005 Chin. Phys. 14 1766
[13] Bag B C, Banik S K and Ray D S 2001 Phys. Rev. E 64 026110
[14] Bag B C 2002 Phys. Rev. E 66 026112
[15] Bag B C 2002 Phys. Rev. E 65 046118
[16] Goswami G, Mukherjee B and Bag B C 2005 J. Phys. A: Math. Gen. 38 1659
[17] Xie W X, Xu W and Cai L 2006 Acta Phys. Sin. 55 1639 (in Chinese)
[18] Daems D and Nicolis G 1999 Phys. Rev. E 59 4000
[19] Xing X S 2004 Acta Phys. Sin. 53 2852 (in Chinese)
[20] Hu G 1994 Stochastic Forces and Nonlinear System (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese)
[21] Kramers H A 1940 Physica 7 284
[22] Brody D and Meister B 1995 Phys. Lett. A 204 93
[1] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[2] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[3] ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2021, 30(9): 095201.
[4] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[5] Entropy-based link prediction in weighted networks
Zhongqi Xu(许忠奇), Cunlai Pu(濮存来), Rajput Ramiz Sharafat, Lunbo Li(李伦波), Jian Yang(杨健). Chin. Phys. B, 2017, 26(1): 018902.
[6] Shannon information capacity of time reversal wideband multiple-input multiple-output system based on correlated statistical channels
Yu Yang(杨瑜), Bing-Zhong Wang(王秉中), Shuai Ding(丁帅). Chin. Phys. B, 2016, 25(5): 050101.
[7] Quantum information entropy for one-dimensional system undergoing quantum phase transition
Xu-Dong Song(宋旭东), Shi-Hai Dong(董世海), Yu Zhang(张宇). Chin. Phys. B, 2016, 25(5): 050302.
[8] Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai. Chin. Phys. B, 2015, 24(10): 100303.
[9] Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential
Guo-Hua Sun, M. Avila Aoki, Shi-Hai Dong. Chin. Phys. B, 2013, 22(5): 050302.
[10] Effect of time delay on the upper bound of the time derivative of information entropy in a stochastic dynamical system
Zhang Min-Min(张敏敏), Wang Can-Jun(王参军), and Mei Dong-Cheng(梅冬成) . Chin. Phys. B, 2011, 20(11): 110501.
[11] Preliminary research on the relationship between long-range correlations and predictability
Zhang Zhi-Sen(张志森), Gong Zhi-Qiang(龚志强), Zhi Rong(支蓉), Feng Guo-Lin(封国林), and Hu Jing-Guo(胡经国). Chin. Phys. B, 2011, 20(1): 019201.
[12] Upper bound for the time derivative of entropy for a stochastic dynamical system with double singularities driven by non-Gaussian noise
Guo Pei-Rong(郭培荣), Xu Wei(徐伟), and Liu Di(刘迪). Chin. Phys. B, 2010, 19(3): 030520.
[13] Information entropy for static spherically symmetric black holes
Jiang Ji-Jian(蒋继建) and Li Chuan-An(李传安). Chin. Phys. B, 2009, 18(2): 451-456.
[14] Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation
Xie Wen-Xian(谢文贤), Xu Wei(徐伟), and Cai Li(蔡力). Chin. Phys. B, 2007, 16(1): 42-46.
[15] Evaluating the dynamical coupling between spatiotemporally chaotic signals via an information theory approach
Xiao Fang-Hong (肖方红), Guo Shao-Hua (郭少华), Hu Yuan-Tai (胡元太). Chin. Phys. B, 2006, 15(7): 1460-1463.
No Suggested Reading articles found!