Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 075201    DOI: 10.1088/1674-1056/ac5883
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Modeling of beam ions loss and slowing down with Coulomb collisions in EAST

Yifeng Zheng(郑艺峰)1, Jianyuan Xiao(肖建元)1,†, Baolong Hao(郝保龙)2, Liqing Xu(徐立清)3, Yanpeng Wang(王彦鹏)1, Jiangshan Zheng(郑江山)1, and Ge Zhuang(庄革)1
1 School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
2 Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  This paper uses the implicit Monte-Carlo full-orbit-following parallel program ISSDE to calculate the prompt loss and slowing down process of neutral beam injection (NBI)-generated fast ions due to Coulomb collisions in the equilibrium configuration of Experimental Advanced Superconducting Tokamak (EAST). This program is based on the weak equivalence of the Fokker-Planck equation under Rosenbluth MacDonald Judd (RMJ) potential and Stratonovich stochastic differential equation (SDE). The prompt loss with the LCFS boundary and the first wall (FW) boundary of the two co-current neutral injection beams are studied. Simulation results indicate that the loss behavior of fast ions using the FW boundary is very different from that of the LCFS boundary, especially for fast ions with a large gyration radius. According to our calculations, about 5.11% of fast ions generated by perpendicular injection drift out of the LCFS and then return inside the LCFS to be captured by the magnetic field. The prompt loss ratio of fast ions and the ratio of orbital types depend on the initial distribution of fast ions in the Pζ-$\varLambda$ space. Under the effect of Coulomb collisions, the pitch-angle scattering and stochastic diffusion happens, which will cause more fast ion loss. For short time scales, among the particles lost due to collisions, the fraction of banana ions reaches 92.31% in the perpendicular beam and 58.65% in the tangential beam when the fraction of banana ions in the tangential beam is 3.4% of the total ions, which means that the effect of Coulomb collisions on banana fast ions is more significant. For long time scales, the additional fast ion loss caused by Coulomb collisions of tangential and perpendicular beams accounted for 16.21% and 25.05% of the total particles, respectively. We have also investigated the slowing down process of NBI fast ions.
Keywords:  NBI fast ion loss      slowing down process      EAST      Coulomb collisions  
Received:  24 December 2021      Revised:  07 February 2022      Accepted manuscript online:  25 February 2022
PACS:  52.20.Fs (Electron collisions)  
  52.25.Xz (Magnetized plasmas)  
  52.40.Mj (Particle beam interactions in plasmas)  
  52.50.Gj (Plasma heating by particle beams)  
Fund: Project supported by the National MCF Energy Research and Development Program (Grant No. 2018YFE0304100), the National Key Research and Development Program of China (Grant Nos. 2016YFA0400600, 2016YFA0400601, 2016YFA0400602, 2019YFE03020004, and 2019YFE03040004), and the National Natural Science Foundation of China (Grant Nos. 11805273 and 11905220). One of the authors (Yifeng Zheng) thanks Feng Wang and Shijie Liu from Dalian University of Technology for the benchmark work with PTC. Numerical computations were performed on Tianhe High Performance Computing Cluster in National Supercomputer Center in Tianjin.
Corresponding Authors:  Jianyuan Xiao     E-mail:  xiaojy@ustc.edu.cn

Cite this article: 

Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革) Modeling of beam ions loss and slowing down with Coulomb collisions in EAST 2022 Chin. Phys. B 31 075201

[1] Wu B, Wang J, Li J, Wang J and Hu C 2011 Fusion Eng. Des. 86 947
[2] Poli E, García-Muñoz M, Fahrbach H U, Günter S and ASDEX Upgrade Team 2008 Phys. Plasmas 15 032501
[3] Varela J, Cooper W, Nagaoka K, Watanabe K, Spong D, Garcia L, Cappa A and Azegami A 2020 Nucl. Fusion 60 026016
[4] Zhao L, Heidbrink W W, Boehmer H, McWilliams R, Leneman D and Vincena S 2005 Phys. Plasmas 12 052108
[5] Zhang Y P, Isobe M, Liu Y, Yuan G L, Yang J W, Song X Y, Song X M, Cao J Y, Lei G J, Wei H L, Li Y G, Shi Z B, Li X, Yan L W, Yang Q W and Duan X R 2012 Phys. Plasmas 19 112504
[6] Cordey J G 1976 Nucl. Fusion 16 499
[7] Wang J, Xiang D, Cao j and Gong X 2019 Nuclear Fusion and Plasma Physics 39 10
[8] Stacey W M 2011 Phys. Plasmas 18 102504
[9] Wu G and Zhang X 2012 Plasma Sci. Technol. 14 789
[10] Mou M, Liu Y, Wang Z, Chen S and Tang C 2014 Acta Phys. Sin. 63 165201 (in Chinese)
[11] Li J 2012 Plasma Sci. Technol. 14 78
[12] Pfefferlé D 2016 Nucl. Fusion 56 112002
[13] Wu B, Hao B, White R, Wang J, Zang Q, Han X and Hu C 2017 Plasma Phys. Control. Fusion 59 025004
[14] Kramer G J, Budny R V, Ellis R, Gorelenkova M, Heidbrink W W, Kurki-Suonio T, Nazikian R, Salmi A, Schaffer M J, Shinohara K, Snipes J A, Spong D A, Koskela T and Van Zeeland M 2011 Nucl. Fusion 51 103029
[15] Xu Y, Guo W, Ye L, Xiao X, Wang S and Zhu S 2018 Phys. Plasmas 25 10
[16] Xu Y, Li L, Hu Y, Liu Y, Guo W, Ye L and Xiao X 2020 Nucl. Fusion 60 15
[17] Pinches S D, Chapman I T, Lauber P W, Oliver H J C, Sharapov S E, Shinohara K and Tani K 2015 Phys. Plasmas 22 021807
[18] He K, Sun Y, Wan B, Gu S, Jia M and Hu Y 2021 Nucl. Fusion 61 016009
[19] Zheng Y, Xiao J, Wang Y, Zheng J and Zhuang G 2021 Chin. Phys. B 30 095201
[20] Cadjan M G and Ivanov M F 1999 J. Plasma Phys. 61 89
[21] I Fernandez-Gomez, J R Martin-Solis and R Sanchez 2012 Phys. Plasmas 19 102504
[22] White R B and Chance M S 1984 Phys. Fluids 27 2455
[23] Xu Y, Guo W, Hu Y, Ye L, Xiao X and Wang S 2019 Comput. Phys. Commun. 244 9
[24] Tani K, Takizuka T, Azumi M and Kishimoto H 1983 Nucl. Fusion 23 657
[25] Hirvijoki E, Asunta O, Koskela T, Kurki-Suonio T, Miettunen J, Sipilä S, Snicker A and Äkäslompolo S 2014 Comput. Phys. Commun. 185 1310
[26] Kramer G J, Budny R V, Bortolon A, Fredrickson E D, Fu G Y, Heidbrink W W, Nazikian R, Valeo E and Van Zeeland M A 2013 Plasma Phys. Control. Fusion 55 025013
[27] Pfefferlé D 2014 Comput. Phys. Commun. 54 14
[28] He Y, Sun Y, Liu J and Qin H 2015 J. Comput. Phys. 281 135
[29] Wang Y, Qin H and Liu J 2016 Phys. Plasmas 23 062505
[30] Wang Y, Liu J, Qin H, zhi Yu and Yao Y 2017 Comput. Phys. Commun. 220 212
[31] Pankin A, McCune D, Andre R, Bateman G and Kritz A 2004 Comput. Phys. Commun. 159 157
[32] Wang F, Zhao R, Wang Z X, Zhang Y, Lin Z H and Liu S J 2021 Chin. Phys. Lett. 38 055201
[33] Lao L, St John H, Stambaugh R, Kellman A and Pfeiffer W 1985 Nucl. Fusion 25 1611
[34] Hu C, Xie Y, Xie Y, Liu S, Xu Y, Liang L, Jiang C, Sheng P, Gu Y, Li J and Liu Z 2015 Plasma Sci. Technol. 17 817
[35] Lao L 2013 EFIT Tutorial Equilibrium Reconstruction Methods and Best Practices
[36] Manish Vachharajani NUBEAM Help
[37] Goldston R J, McCune D C, Towner H H, Davis S L, Hawryluk R J and Schmidt G L 1981 J. Comput. Phys. 43 61
[38] Pankin A, McCune D, Andre R, Bateman G and Kritz A 2004 Comput. Phys. Commun. 159 157
[39] Hao B 2018 "The study of beam injected fast ions loss on EAST", Doctor of Philosophy, University of Science and Technology of China, Hefei, Anhui Province
[40] Chang C S, Zweben S J, Schivell J, Budny R and Scott S 1994 Phys. Plasmas 1 3857
[41] Xu Y, Hu Y, Zhang X, Xu X, Ye L, Xiao X, Zheng Z, 2021 Plasma Sci. Technol. 23 095102
[42] Wu C R, Huang J, Chang J F, Zhang J, Zhou R J, Xu Z, Gao W, Isobe M, Ogawa K, Lin S Y, Hu L Q, Li J G and EAST Team 2018 Rev. Sci. Instrum. 89 10I144
[43] Li K, Hu L, Zhong G, Zhou R, Cao H, Xiao M, Hong B, Zhang R, Zhou M and Huang L 2019 Fusion Eng. Des 148 111278
[1] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[2] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[5] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[6] Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team. Chin. Phys. B, 2022, 31(10): 105203.
[7] ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2021, 30(9): 095201.
[8] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[9] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[10] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[11] Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak
Yongcai Shen(沈永才), Hongming Zhang(张洪明), Bo Lyu(吕波), Yingying Li(李颖颖), Jia Fu(符佳), Fudi Wang(王福地), Qing Zang(臧庆), Baonian Wan(万宝年), Pan Pan(潘盼), Minyou Ye(叶民友). Chin. Phys. B, 2020, 29(6): 065206.
[12] Plasma shape optimization for EAST tokamak using orthogonal method
Yuan-Yang Chen(陈远洋), Xiao-Hua Bao(鲍晓华), Peng Fu(傅鹏), Ge Gao(高格). Chin. Phys. B, 2019, 28(1): 015201.
[13] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
[14] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
[15] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
No Suggested Reading articles found!