Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077802    DOI: 10.1088/1674-1056/abec2f

Linear and nonlinear optical response of g-C3N4-based quantum dots

Jing-Zhi Zhang(张竞之)1 and Hong Zhang(张红)1,2,†
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  Graphite carbon nitride (g-C3N4) attracts wide-ranging research interest due to its extraordinary physicochemical properties and promising applications ranging from heterogeneous catalysis to fuel cells. In this work, we design different g-C3N4-based quantum dots (gCNQDs), carry out a systematic study of optical properties, and elucidate the shape selectivity, composite nanostructure, and outfield effect. In particular, composites of gCNQDs and metal nanochains present excellent optical response, making it applicable to bioimaging, nano-plasma devices, and metalloenzyme in infrared light related fields. Besides, QDs which original bridging nitrogen atoms are replaced by amino (-NH2), hydroxyl (-OH), and methyl (-CH3) functional groups respectively, have excellent spectral selectivity in the deep ultraviolet region. More interestingly, in the study of the laser interaction with materials, the gCNQDs exhibit extremely high stability and light corrosion resistance. Phase transition from insulation to metal is observed under the critical condition of about 5 eV intensity or 337 nm wavelength. All provided theoretical support for designs and applications in g-C3N4 quantum devices.
Keywords:  graphite carbon nitride      optical response      ultra-fast laser      plasmon  
Received:  02 February 2021      Revised:  28 February 2021      Accepted manuscript online:  05 March 2021
PACS:  78.67.Hc (Quantum dots)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  79.20.Ds (Laser-beam impact phenomena)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974253), and Science Speciality Program of Sichuan University (Grant No. 2020SCUNL210).
Corresponding Authors:  Hong Zhang     E-mail:

Cite this article: 

Jing-Zhi Zhang(张竞之) and Hong Zhang(张红) Linear and nonlinear optical response of g-C3N4-based quantum dots 2021 Chin. Phys. B 30 077802

[1] Wen J Q, Xie J, Chen X B and Li X 2017 Appl. Surf. Sci. 391 72
[2] Sun Y P, Ha W, Chen J, Qi H Y and Shi Y P 2016 Trac-Trends Anal. Chem. 84 12
[3] Cao S W, Jiang J, Zhu B C and Yu J G 2016 Phys. Chem. Chem. Phys. 18 19457
[4] Ke X, Yang M M, Wang W Z, Luo D X and Zhang M L 2019 Materials 12 2558
[5] Zhu B C, Xia P F, Li Y H, Ho W K and Yu J G 2017 Appl. Surf. Sci. 391 175
[6] Lam S M, Sin J C and Mohamed A R 2016 Mater. Sci. Semicond. Process 47 62
[7] Ye S, Wang R, Wu M Z and Yuan Y P 2015 Appl. Surf. Sci. 358 15
[8] Xia P F, Zhu B C, Yu J G, Cao S W and Jaroniec M 2017 J. Mater. Chem. A 5 3230
[9] Li Y, Feng X H, Lu Z X, Yin H, Liu F and Xiang Q J 2018 J. Colloid Interface Sci. 513 866
[10] Fu J W, Yu J G, Jiang C J and Cheng B 2018 Adv. Energy Mater. 8 1701503
[11] He K L, Xie J, Liu Z Q, Li N, Chen X B, Hu J and Li X 2018 J. Mater. Chem. A 6 13110
[12] Kumar S, Dhiman A, Sudhagar P and Krishnan V 2018 Appl. Surf. Sci. 447 802
[13] Wang Y, Wang X C and Antonietti M 2012 Angew. Chem. Int. Ed. 51 68
[14] Zheng Y, Liu J, Liang J, Jaroniec M and Qiao S Z 2012 Energy Environ. Sci. 5 6717
[15] Yang S B, Gong Y J, Zhang J S, Zhan L, Ma L L, Fang Z Y, Vajtai R, Wang X C and Ajayan P M 2013 Adv. Mater. 25 2452
[16] Zhang J S, Chen Y and Wang X C 2015 Energy Environ. Sci. 8 3092
[17] Sun S D and Liang S H 2017 Nanoscale 9 10544
[18] Wang W J, Jimmy C Y, Shen Z R, Chan D K L and Gu T 2014 Chem. Commun. 50 10148
[19] Sano T, Tsutsui S, Koike K, Hirakawa T, Teramoto Y, Negishi N and Takeuchi K 2013 J. Mater. Chem. A 1 6489
[20] Zhang J S, Guo F S and Wang X C 2013 Adv. Funct. Mater. 23 3008
[21] Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[22] Marques M A, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
[23] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[24] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[25] Botti S, Schindlmayr A, Del Sole R and Reining L 2007 Rep. Prog. Phys. 70 357
[26] Li Y, Li X, Zhang H W, Fan J J and Xiang Q J 2020 J. Mater. Sci. Technol. 56 69
[27] Huang Q, Yu J G, Cao S W, Cui C and Cheng B 2015 Appl. Surf. Sci. 358 350
[28] Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
[29] Yan J, Yuan Z and Gao S W 2007 Phys. Rev. Lett. 98 216602
[30] Yan J and Gao S W 2008 Phys. Rev. B 78 235413
[31] Zhao F, Cheng H H, Hu Y, Song L, Zhang Z P, Jiang L and Qu L T 2014 Sci. Rep. 4 5882
[32] Cheng Q, He Y, Ge Y L, Zhou J G and Song G W 2018 Microchim. Acta 185 332
[33] Nilius N, Wallis T M and Ho W 2002 Science 297 1853
[34] Mishchenko E G, Shytov A V and Silvestrov P G 2010 Phys. Rev. Lett. 104 156806
[35] Schwinghammer K, Tuffy B, Mesch M B, Wirnhier E, Martineau C, Taulelle F, Schnick W, Senker J and Lotsch B V 2013 Angew. Chem. Int. Ed. 52 2435
[36] Kobayashi Y, Fukui K I, Enoki T, Kusakabe K and Kaburagi Y 2005 Phys. Rev. B 71 193406
[37] Li H, Shao F Q, Huang H, Feng J J and Wang A J 2016 Sens. Actuators B Chem. 226 506
[38] Zhan Y, Liu Z M, Liu Q Q, Huang D, Wei Y, Hu Y C, Lian X J and Hu C F 2017 New J. Chem. 41 3930
[39] Chan M H, Chen C W, Lee I J, Chan Y C, Tu D T, Hsiao M, Chen C H, Chen X Y and Liu R S 2016 Inorg. Chem. 55 10267
[40] Chan M H, Pan Y T, Lee I J, Chen C W, Chan Y C, Hsiao M, Wang F, Sun L D, Chen X Y and Liu R S 2017 Small 13 1700038
[41] Autere A, Jussila H, Dai Y Y, Wang Y D, Lipsanen H and Sun Z P 2018 Adv. Mater. 30 1705963
[42] Cavalleri A 2018 Science 362 525
[43] Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A and Vardeny Z V 2015 Nat. Phys. 11 427
[44] Fan M Q, Li T, Li G Q, Zhao S Z, Yang K J, Zhang S Y, Zhang B T, Xu J Q and Krankel C 2017 Opt. Express 25 12796
[45] Anisimov S I, Kapeliovich B L and Perelman T L 1974 Sov. Phys. JETP 39 375
[46] Lin J H, Zhang H, Zhang B F, Zhao J M, Miyamoto Y and Cheng X L 2018 J. Phys. Chem. C 122 19992
[47] Liu M K, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J W, Wolf S A, Omenetto F G, Zhang X, Nelson K A and Averitt R D 2012 Nature 487 345
[48] Tian N, Huang H W, Du X, Dong F and Zhang Y H 2019 J. Mater. Chem. A 7 11584
[1] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[2] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[3] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[4] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[5] Solar energy full-spectrum perfect absorption and efficient photo-thermal generation
Zhefu Liao(廖喆夫), Zhengqi Liu(刘正奇), Qizhao Wu(吴起兆), Xiaoshan Liu(刘晓山), Xuefeng Zhan(詹学峰), Gaorong Zeng(曾高荣), and Guiqiang Liu(刘桂强). Chin. Phys. B, 2021, 30(8): 084206.
[6] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[7] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[8] Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣). Chin. Phys. B, 2021, 30(7): 077301.
[9] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[10] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[11] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[12] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[13] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[14] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[15] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
No Suggested Reading articles found!