Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 068103    DOI: 10.1088/1674-1056/abdb1f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Understanding the synergistic effect of mixed solvent annealing on perovskite film formation

Kun Qian(钱昆)1, Yu Li(李渝)1,†, Jingnan Song(宋静楠)2, Jazib Ali1, Ming Zhang(张明)2, Lei Zhu(朱磊)2, Hong Ding(丁虹)2, Junzhe Zhan(詹俊哲)1, and Wei Feng(冯威)3
1 School of Physics and Astronomy and Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China;
2 Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3 State Key Laboratory of Fluorinated Materials, Zibo 256401, China
Abstract  Morphology control of perovskite films is of critical importance for high-performance photovoltaic devices. Although solvent vapor annealing (SVA) treatment has been widely used to improve the film quality efficiently, the detailed mechanism of film growth is still under construction, and there is still no consensus on the selection of solvents and volume for further optimization. Here, a series of solvents (DMF, DMSO, mixed DMF/DMSO) were opted for exploring their impact on fundamental structural and physical properties of perovskite films and the performance of corresponding devices. Mixed solvent SVA treatment resulted in unique benefits that integrated the advantages of each solvent, generating a champion device efficiency of 19.76% with improved humidity and thermal stability. The crystallization mechanism was constructed by conducting grazing-incidence wide-angle x-ray diffraction (GIWAXS) characterizations, showing that dissolution and recrystallization dominated the film formation. A proper choice of solvent and its volume balancing the two processes thus afforded the desired perovskite film. This study reveals the underlying process of film formation, paving the way to producing energy-harvesting materials in a controlled manner towards energy-efficient and stable perovskite-based devices.
Keywords:  perovskite solar cell      solvent vapor annealing      dissolution      recrystallization  
Received:  10 December 2020      Revised:  07 January 2021      Accepted manuscript online:  13 January 2021
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.15.Aa (Theory and models of film growth)  
  81.15.Aa (Theory and models of film growth)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21734009, 51473009, 21225209, 91427303, and 61805138). Portions of this research were carried out at beamline 7.3.3 at the Advanced Light Source, Molecular Foundry, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences.
Corresponding Authors:  Yu Li     E-mail:  yu.li@sjtu.edu.cn

Cite this article: 

Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威) Understanding the synergistic effect of mixed solvent annealing on perovskite film formation 2021 Chin. Phys. B 30 068103

[1] Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M and Walsh A 2014 Nano Lett. 14 2584
[2] Miao J, Duan X, Li J, Dai J, Liu B, Wang S, Zhou W and Shao Z 2019 Chem. Eng. J. 355 721
[3] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[4] Laban W A and Etgar L 2013 Energy & Environmental Science 6 3249
[5] D'Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J and Petrozza A 2014 Nat. Commun. 5 3586
[6] Tu Y, Xu G, Yang X, Zhang Y, Li Z, Su R, Luo D, Yang W, Miao Y, Cai R, Jiang L, Du X, Yang Y, Liu Q, Gao Y, Zhao S, Huang W, Gong Q and Zhu R 2019 Sci. China Phys. Mech. Astron. 62 974221
[7] NREL Best Research-Cell Efficiencies Record (last accessed January 2021)
[8] Zheng X, Chen B, Wu C and Priya S 2015 Nano Energy 17 269
[9] Zheng Y, Su R, Xu Z, Luo D, Dong H, Jiao B, Wu Z, Gong Q and Zhu R 2019 Science Bulletin 64 1255
[10] Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G and Cahen D 2014 Nano Lett. 14 1000
[11] Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903
[12] Luo D, Su R, Zhang W, Gong Q and Zhu R 2019 Nat. Rev. Mater. 5 44
[13] Lee J W, Kim H S and Park N G 2016 Acc. Chem. Res. 49 311
[14] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S and Seok S I 2014 Nat. Mater. 13 897
[15] Wang Y F, Wu J, Zhang P, Liu D T, Zhang T, Ji L, Gu X L, Chen Z D and Li S B 2017 Nano Energy 39 616
[16] Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B and Spiccia L 2014 Angew. Chem. Int. Ed. Engl. 53 9898
[17] Li G, Yao Y, Yang H, Shrotriya V, Yang G and Yang Y 2007 Adv. Funct. Mater. 17 1636
[18] You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G and Yang Y 2014 Appl. Phys. Lett. 105 183902
[19] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J 2014 Adv. Mater. 26 6503
[20] Liu J, Gao C, He X, Ye Q, Ouyang L, Zhuang D, Liao C, Mei J and Lau W 2015 ACS Appl. Mater. Interfaces 7 24008
[21] Luo J, Qiu R Z, Yang Z S, Wang Y X and Zhang Q F 2018 RSC Advances 8 724
[22] Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W and Han L 2014 Energy & Environmental Science 7 2934
[23] Guo Y, Shoyama K, Sato W, Matsuo Y, Inoue K, Harano K, Liu C, Tanaka H and Nakamura E 2015 J. Am. Chem. Soc. 137 15907
[24] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[25] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[26] Bube R H 1962 J. Appl. Phys. 33 1733
[27] Liu Y, Sun J, Yang Z, Yang D, Ren X, Xu H, Yang Z and Liu S F 2016 Adv. Opt. Mater. 4 1829
[28] Samiee M, Konduri S, Ganapathy B, Kottokkaran R, Abbas H A, Kitahara A, Joshi P, Zhang L, Noack M and Dalal V 2014 Appl. Phys. Lett. 105 4
[29] Song J, Zhou G, Chen W, Zhang Q, Ali J, Hu Q, Wang J, Wang C, Feng W, Djurisic A B, Zhu H, Zhang Y, Russell T and Liu F 2020 Adv. Mater. 32 2002784
[30] Hu Q, Zhao L, Wu J, Gao K, Luo D, Jiang Y, Zhang Z, Zhu C, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Gratzel M, Liu F, Russell T P, Zhu R and Gong Q 2017 Nat. Commun. 8 1
[31] Deng Y, Brackle C H V, Dai X, Zhao J and Huang J 2019 Sci. Adv. 5 eaax7537
[32] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K and Zhang W 2014 J. Phys. Chem. Lett. 5 1511
[33] Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G and McGehee M D 2014 Energy Environ. Sci. 7 3690
[34] Niu T Q, Lu J, Munir R, Li J B, Barrit D, Zhang X, Hu H L, Yang Z, Amassian A, Zhao K and Liu S Z 2018 Adv. Mater. 30 1706576
[1] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[2] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[5] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[6] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[7] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[8] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[9] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[10] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[11] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[12] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[13] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[14] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[15] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
No Suggested Reading articles found!