Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 018106    DOI: 10.1088/1674-1056/abcfa4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition

Yan Wang(王岩)1, Shuai Luo(罗帅)4,5, Haiming Ji(季海铭)4,5, Di Qu(曲迪)1,2,†, and Yidong Huang(黄翊东)3
1 Innovation Center of Advanced Optoelectronic Chip, Institute for Electronics and Information Technology in Tianjin, Tsinghua University, Tianjin 300467, China; 2 Tianjin H-Chip Technology Group Corporation, Tianjin 300467, China; 3 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; 4 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We demonstrate high-performance broadband tunable external-cavity lasers (ECLs) with the metal-organic chemical vapor deposition (MOCVD) grown InAs/InP quantum dots (QDs) structures. Without cavity facet coatings, the 3-dB spectral bandwidth of the Fabry-Perot (FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm. Combined with the anti-reflection (AR) /high-reflection (HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 kA/cm2. The maximum output power of 6.5 mW was achieved under a 500 mA injection current. All achievements mentioned above were obtained under continuous-wave (CW) mode at room temperature (RT).
Keywords:  InAs/InP quantum dot      external-cavity laser      continuous-wave operation      metal-organic chemical vapor deposition  
Revised:  06 November 2020      Published:  30 December 2020
PACS:  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
  81.05.Ea (III-V semiconductors)  
  78.67.Hc (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61974141), Tianjin Municipal Science and Technology Bureau, and Science and Technology Innovation Bureau of China-Singapore Tianjin Eco-City.
Corresponding Authors:  Corresponding author. E-mail: qudi@hchiptech.com   

Cite this article: 

Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东) Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition 2021 Chin. Phys. B 30 018106

1 Barwood G P, Gill P and Rowley W R C 1998 Meas. Sci. Techno. 9 1036
2 Grundmann M 2000 Appl. Phys. Lett. 77 4265
3 Lester L F, Stintz A, Li H, Newell T C, Pease E A, Fuchs B A and Malloy K J 1999 IEEE Photon. Technol. Lett. 11 931
4 Chia C K, Chua S J, Dong J R and Teo S L 2007 Appl. Phys. Lett. 90 061101
5 Djie H S, Ooi B S, Fang X M, Wu Y, Fastenau J M, Liu W K and Hopkinson M 2007 Opt. Lett. 32 44
6 Chen P, Gong Q, Cao C F, Li S G, Wang Y, Liu Q B, Yue L, Zhang Y G, Feng S L, Ma C H and Wang H L 2011 Appl. Phys. Lett. 98 121102
7 Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
8 Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
9 Haggett S, Krakowski M, Montrosset I and Cataluna M A 2014 Opt. Express 22 22854
10 Sellers I R, Liu H Y, Groom K M, Childs D T, Robbins D, Badcock T J, Hopkinson M, Mowbray D J and Skolnick A S 2004 Electron. Lett. 40 1412
11 Fathpour S, Mi Z, Bhattacharya P, Kovsh A R, Mikhrin S S, Krestnikov I L, Kozhukhov A V and Ledentsov N N 2004 Appl. Phys. Lett. 85 5164
12 Yoon S, Moon Y, Lee T W, Yoon E and Kim Y D 1999 Appl. Phys. Lett. 74 2029
13 Anantathanasarn S, Notzel R, van Veldhoven P J, van Otten F W M, Barbarin Y, Servanton G, de Vries T, Smalbrugge E, Geluk E J, Eijkemans T J, Bente E A J M, Oei Y S, Smit M K and Wolter J H 2006 Appl. Phys. Lett. 89 073115
14 Li S G, Gong Q, Lao Y F, He K, Li J, Zhang Y G, Feng S L and Wang H L 2008 Appl. Phys. Lett. 93 111109
15 Franke D, Moehrle M, Boettcher J, Harde P, Sigmund A and Kuenzel H 2007 Appl. Phys. Lett. 91 081117
16 Kawaguchi K, Ekawa M, Kuramata A, Akiyama T, Ebe H, Sugawara M and Arakawa Y 2004 Appl. Phys. Lett. 85 4331
17 Michon A, Saint-Girons G, Beaudoin G, Sagnes I, Largeau L and Patriarche G 2005 Appl. Phys. Lett. 87 253114
18 Semenova E S, Kulkova I V, Kadkhodazadeh S, Schubert M and Yvind K 2011 Appl. Phys. Lett. 99 101106
19 Jang J W, Pyun S H, Lee S H, Lee I C, Jeong W G, Stevenson R, Dapkus P D, Kim N J, Hwang M S and Lee D 2004 Appl. Phys. Lett. 85 3675
20 Xiong Y L and Zhang X P IEEE J. Quantum Electron. 54 2000109
21 Hasan S, Merckling C, Pantouvaki M, Meersschaut J, Van C J and Vandervorst W 2019 J. Cryst. Growth 509 133
22 Ortner G, Allen C N, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
23 Gao F, Luo S, Ji H M, Yang X G and Yang T 2015 Appl. Optics 54 472
24 Luo S, Ji H M, Gao F, Yang X G,Yang T 2013 J. Cryst. Growth 375 100
25 Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J and Yang T 2013 Chin. Phys. Lett. 30 068101
26 Jeong W G, Dapkus P D, Lee U H, Yim J S, Lee D and Lee B T 2001 Appl. Phys. Lett. 78 1171
27 Gao F, Luo S, Ji H M, Yang X G, Liang P and Yang T 2015 Opt. Express 23 18493
28 Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799
29 Ding Y Y, Gao F, Lv Z R, Zhang Z K, Yang T and Wang Z G 2018 J. Nanosci. Nanotech. 18 7426
30 Yuan H H, Gao F and Yang T 2018 Opt. Lett. 43 3025
[1] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[2] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie, Li Ming, Zhao Qian, Gu Wen-Wen, Lau Kei-May. Chin. Phys. B, 2015, 24(8): 087305.
[3] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie, Li Ming, Lau Kei-May. Chin. Phys. B, 2015, 24(7): 078102.
[4] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming, Zhang Jie, Lin Wen-Yu, Ye Meng-Xin, Feng Xiang-Xu, Zhang Dong-Yan, Steve Ding, Xu Chen-Ke, Liu Bao-Lin. Chin. Phys. B, 2015, 24(5): 057801.
[5] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai, Liu Ren-Jun, Lü You, Yang Hao-Yu, Li Guo-Xing, Zhang Yuan-Tao, Zhang Bao-Lin. Chin. Phys. B, 2015, 24(1): 018102.
[6] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing. Chin. Phys. B, 2014, 23(4): 047804.
[7] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying, Xu Zhang-Cheng, Cui Ming-Qi, Xie Yu-Xin, Zhang Guo-Yi. Chin. Phys. B, 2014, 23(10): 107803.
[8] Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content
Zhao Bi-Jun, Chen Xin, Ren Zhi-Wei, Tong Jin-Hui, Wang Xing-Fu, Li Dan-Wei, Zhuo Xiang-Jing, Zhang Jun, Yi Han-Xiang, Li Shu-Ti. Chin. Phys. B, 2013, 22(8): 088401.
[9] Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
Lü Xiao-Long, Zhang Xia, Liu Xiao-Long, Yan Xin, Cui Jian-Gong, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Chin. Phys. B, 2013, 22(6): 066101.
[10] Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering
Wang Dang-Hui, Xu Sheng-Rui, Hao Yue, Zhang Jin-Cheng, Xu Tian-Han, Lin Zhi-Yu, Zhou Hao, Xue Xiao-Yong. Chin. Phys. B, 2013, 22(2): 028101.
[11] Growth and properties of wide spectral white light emitting diodes
Xie Zi-Li, Zhang Rong, Fu De-Yi, Liu Bin, Xiu Xiang-Qian, Hua Xue-Mei, Zhao Hong, Chen Peng, Han Ping, Shi Yi, Zheng You-Dou. Chin. Phys. B, 2011, 20(11): 116801.
No Suggested Reading articles found!