Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014703    DOI: 10.1088/1674-1056/abb3ec
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology

Khasan S Karimov1,2, Fahmi F Muhammadsharif3, Zubair Ahmad4,†, M Muqeet Rehman1,5, and Rashid Ali1
1 GIK Institute of Engineering Sciences and Technology, Topi, District Swabi, KPK, 23640, Pakistan; 2 Center for Innovative Development of Science and New Technologies of Academy of Sciences of Tajikistan, Dushanbe, 734025; 3 Department of Physics, Faculty of Science and Health, Koya University, 44023 Koya, Kurdistan Region-F. R., Iraq; 4 Center for Advanced Materials (CAM), Qatar University, P. O. Box 2713, Doha, Qatar; 5 Department of Electronic Engineering, Jeju National University, Jeju, Republic of Korea
Abstract  Nickel phthalocyanine (NiPc) film was deposited onto the surface of flexible conductive glass by rubbing-in technology and used to fabricate devices based on ITO/NiPc/CNT/rubber structure. The I-V characteristics of the devices were investigated under different uniaxial pressures of 200, 280, and 480 gf/cm2, applied perpendicular to the surface of the NiPc film. Results showed that the nonlinearity coefficients of the I-V curves are in the range of 2 to 3, which was found to be decreased with the increase of the pressure. The rectification ratio of the devices was estimated to be varied from 1.5 to 3 based on the applied pressure. Concluding, the resistance of the active layers was decreased with the increase of both pressure and voltage. We believe that using the rubbing-in technology under sufficient applied pressure it is possible to utilize NiPc for the development of various electronic devices such as diodes, nonlinear resistors, and sensors.
Keywords:  pressure      electrical property      NiPc      thin film      rubbing-in technology  
Revised:  10 August 2020      Published:  23 December 2020
PACS:  47.80.Fg (Pressure and temperature measurements)  
  61.66.Hq (Organic compounds)  
  42.81.Pa (Sensors, gyros)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Corresponding Authors:  Corresponding author. E-mail: zubairtarar@qu.edu.qa   

Cite this article: 

Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology 2021 Chin. Phys. B 30 014703

1 Muhammad F F and Sulaiman K 2018 ARO-The Scientific Journal of KOYA University 6 69
2 Muhammad F F, Yahya M Y and Sulaiman K 2017 Mater. Chem. Phys. 188 86
3 Au V K M, Wu D and Yam V W W 2015 J. Am. Chem. Soc. 137 4654
4 Lee J, Chen H F, Batagoda T, Coburn C, Djurovich P I, Thompson M E and Forrest S R 2016 Nat. Mater. 15 92
5 Lochner C M, Khan Y, Pierre A and Arias A C 2014 Nat. Commun. 5 5745
6 Lüsem B R, Keum C M, Kasemann D, Naab B, Bao Z and Leo K 2016 Chem. Rev. 116 13714
7 Poggini L, Cucinotta G, Pradipto A M, Scarrozza M, Barone P, Caneschi A, Graziosi P, Calbucci M, Cecchini R and Dediu V A 2016 Adv. Mater. Interfaces 3 1500855
8 Karimov K S, Ahmad Z, Bhadra J and Al-Thani N 2019 MethodsX 6 424
9 Neghabi M, Zadsar M and Ghorashi S M B 2014 Mater. Sci. semicond. Process. 17 13
10 Zhang J, Wang H, Yan X, Wang J, Shi J and Yan D 2005 Adv. Mater. 17 1191
11 Furini L N, Martin C S, Camacho S A, Rubira R J, Fernandes J D, Silva E A, Gomes T C, Stunges G M, Constantino C J and Alessio P2020 Thin Solid Films 137897
12 Tarrad S N, Hussain S A and Al-Asady F H2020 AIP Conference Proceedings (AIP Publishing LLC) p. 020036
13 Ta\csltín N, Zirek Y, \cSan Y M, Ta\csltín C, Karaku\cs S and Kilislio\uglu A 2020 Physica E 116 113766
14 Sinha M, Verma P and Panda S 2020 Flexible and Printed Electronics 5 014014
15 Stakhira P, Pakhomov G, Cherpak V, Volynyuk D, Luka G, Godlewski M, Guziewicz E and Hotra Z2010 Open Physics 8 798
16 Karimov K, Saleem M, Ahmed N, Tahir M, Zahid M, Sajid M and Bashir M2016 Proc. Rom. Acad. Ser. A Math. Phys. 17 84
17 Karimov K S, Ahmad Z, Khan M I, Siddiqui K J, Qasuria T, Abbas S Z, Usman M and Rehman A U2019 Heliyon 5 e01187
18 Karimov K S, Fatima N, Siddiqui K J and Khan M I2019 Mater. Sci. Energy Technol. 2 551
19 Ejidike I P, Dikio C W, Wankasi D, Dikio E D and Mtunzi F M 2018 Int. J. Environ. Studies 75 932
20 Natta G and Corradini P 1956 J. Polymer Sci. 20 251
21 Hussein M T, Nasir E M and Al-Aarajiy A H2013 Adv. Mater. Phys. Chem. 3 30388
22 Leontie L, Druta I, Danac R, Prelipceanu M and Rusu G J 2005 Prog. Organic Coatings 54 175
23 Park Y, Choong V, Gao Y, Hsieh B R and Tang C W J A P L 1996 Appl. Phys. Lett. 68 2699
24 Shiraishi M and Ata M J C 2001 Carbon 39 1913
[1] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[2] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[3] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[4] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[5] Computation and analysis of light emission in two-bubble sonoluminescence
Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军). Chin. Phys. B, 2020, 29(9): 097801.
[6] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[7] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[8] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[11] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[12] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[13] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[14] Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization
Qiao-Jun Cao(曹巧君), Shuang Wen(温爽), Hai-Peng Xie(谢海鹏), Bi-Yun Shi(施碧云), Qun Wang(王群), Cong-Rong Lu(卢从蓉), Yongli Gao(高永利), Wei-Dong Dou(窦卫东). Chin. Phys. B, 2020, 29(7): 076801.
[15] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
No Suggested Reading articles found!