Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117501    DOI: 10.1088/1674-1056/abb22d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates

Jiapeng Zhao(赵佳鹏)1, Qinhuang Guo(郭勤皇)1, Huizhong Yin(尹慧中)1, Jintang Zou(邹锦堂)2, Zhenjie Zhao(赵振杰)2, Wenjuan Cheng(程文娟)2, †, Dongmei Jiang(蒋冬梅)1, and Qingfeng Zhan(詹清峰)1,, ‡
1 Key Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
2 Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Ministry of Education, Shanghai 200241, China
Abstract  

The magneto–mechanical coupling effect and magnetic anisotropy of Fe10Co90 (FeCo) films deposited on silicon wafer (Si), flexible polyethylene terephthalate (PET), freestanding polydimethylsiloxane (PDMS), and pre-stretched 20% PDMS substrates were studied in detail. The loop squareness ratio Mr/Ms and the coercive Hc of the FeCo film grown on a PET substrate can be obviously tuned by applying a small tensile-bending strain, and those of the FeCo film grown on a freestanding PDMS substrate can only be slightly changed when applying a relatively large tensile bending strain. For the FeCo film prepared on a 20% pre-stretched PDMS, a wrinkled morphology is obtained after removing the pre-strain. The wrinkled FeCo film can keep the magnetic properties unchanged when applying a relatively large tensile bending strain perpendicular to the wrinkles. This reveals that PDMS is an ideal substrate for magnetic films to realize flexible immutability. Our results may help for developing flexible magnetic devices.

Keywords:  flexible substrates      FeCo films      magnetic anisotropy      magneto-mechanical coupling effect  
Received:  10 May 2020      Revised:  22 July 2020      Accepted manuscript online:  25 August 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11674336 and 11874150).
Corresponding Authors:  Corresponding author. E-mail: wjcheng@phy.ecnu.edu.cn Corresponding author. E-mail: qfzhan@phy.ecnu.edu.cn   

Cite this article: 

Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰) Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates 2020 Chin. Phys. B 29 117501

Fig. 1.  

AFM images (10 × 10 μm2) of bare substrates of (a) rigid Si, (b) flexible PET, and (c) soft PDMS. AFM images (10 × 10 μm2) of the stacks of Ta(6 nm)/FeCo(40 nm)/Ta(6 nm) deposited on (d) Si, (e) PET, and (f) PDMS substrates.

Fig. 2.  

Angular dependence of (a) the loop squareness ratio Mr/Ms and (b) the coercivity Hc for the FeCo films grown on Si, PET, and freestanding PDMS substrates. The hysteresis loops measured along the easy axis (EA) and the hard axis (HA) for the FeCo films grown on Si, PET, and freestanding PDMS substrates.

Fig. 3.  

Hysteresis loops for FeCo films grown on the PET substrate acquired with magnetic field applied along (a) the easy axis (EA) and (b) the hard axis (HA) with different external tensile bending strains applied along the hard axis and the easy axis, respectively. Hysteresis loops for FeCo films grown on the freestanding PDMS substrate acquired with magnetic field applied along (c) the easy axis and (d) the hard axis with different external tensile bending strains applied along the hard axis and the easy axis, respectively. The insets correspondingly show the tensile bending strain dependence of the Mr/Ms ratio and the coercivity.

Fig. 4.  

(a) AFM image (40 × 40 μm2) for the wrinkled FeCo film grown on a 20% pre-stretched PDMS. (b) The corresponding angular dependence of the loop squareness ratio Mr/Ms and the coercive field Hc. (c) The typical hysteresis loops for the wrinkled FeCo film measured along the easy and hard axes. Hysteresis loops for the wrinkled FeCo film acquired along (d) the easy axis and (e) the hard axis with different external tensile bending strains applied perpendicular and parallel to the wrinkles, respectively. The insets correspondingly show the tensile bending strain dependence of the Mr/Ms ratio and the coercivity.

[1]
Kittel C 1947 Phys. Rev. 71 270 DOI: 10.1103/PhysRev.71.270.2
[2]
Phuoc N N Chapon P Acher O Ong C K 2013 J. Appl. Phys. 114 153903 DOI: 10.1063/1.4825225
[3]
Quandt E Ludwig A 1999 J. Appl. Phys. 85 6232 DOI: 10.1063/1.370231
[4]
Lisfi A Lodder J C Wormeester H Poelsema B 2002 Phys. Rev. B 66 174420 DOI: 10.1103/PhysRevB.66.174420
[5]
Fan X Xue D Lin M Zhang Z Guo D Jiang C Wei J 2008 Appl. Phys. Lett. 92 222505 DOI: 10.1063/1.2939439
[6]
Gul Qeemat He W Li Y Sun R Li N Yang X Li Y Gong Z Z Xie Z K Zhang X Q Cheng Z H 2018 Chin. Phys. B 27 097504 DOI: 10.1088/1674-1056/27/9/097504
[7]
Yoo J H Restorff J B Wun-Fogle M Flatau A B 2008 J. Appl. Phys. 103 07B325 DOI: 10.1063/1.2832433
[8]
Kuanr B K Camley R E Celinski Z 2003 J. Appl. Phys. 93 7723 DOI: 10.1063/1.1557964
[9]
Thevenard L Zeng H T Petit D Cowburn R P 2009 Appl. Phys. Lett. 95 232502 DOI: 10.1063/1.3271683
[10]
Ziberi B Frost F Höoche T Rauschenbach B 2005 Phys. Rev. B 72 235310 DOI: 10.1103/PhysRevB.72.235310
[11]
Vaz C A F Steinmuller S J Bland J A C 2007 Phys. Rev. B 75 132402 DOI: 10.1103/PhysRevB.75.132402
[12]
Liedke M O Körner M Lenz K Fritzsche M Ranjan M Keller A Lindner J 2013 Phys. Rev. B 87 024424 DOI: 10.1103/PhysRevB.87.024424
[13]
Liu H L Volodin A Temst K Vantomme A Van Haesendonck C 2015 Phys. Rev. B 91 104403 DOI: 10.1103/PhysRevB.91.104403
[14]
Chen K Frömter R Rössler S Mikuszeit N Oepen H P 2012 Phys. Rev. B 86 064432 DOI: 10.1103/PhysRevB.86.064432
[15]
Ki S Dho J 2015 Appl. Phys. Lett. 106 212404 DOI: 10.1063/1.4921784
[16]
Yang Y Yuan G Yan Z Wang Y Lu X Liu J M 2017 Adv. Mater. DOI: 10.1002/adma.201700425
[17]
Wang X W Gu Y Xiong Z P Cui Z Zhang T 2014 Adv. Mater 26 1336 DOI: 10.1002/adma.201304248
[18]
Nishibe Y Yamadera H Ohta N Tsukada K Ohmura Y 2003 IEEE. Trans. Magn. 39 571 DOI: 10.1109/TMAG.2002.806351
[19]
Zhang H Li Y Y Yang M Y Zhang B Yang G Wang S G Wang K Y 2015 Chin. Phys. B 24 077501 DOI: 10.1088/1674-1056/24/7/077501
[20]
Dai Guohong Xing Xiangjun Shen Yun Deng Xiaohua 2020 J. Phys. D: Appl. Phys. 53 055001 DOI: 10.1088/1361-6463/ab5464
[21]
Yang Y X Yuan G L Yan Z B Wang Y J Lu X B Liu J M 2017 Adv. Mater. DOI: 10.1002/adma.201700425
[22]
Shi Xiaohui Wu Mei Lai Zhengxun Li Xujing Gao Peng Mi Wenbo 2020 ACS Appl. Mater. Interfaces 12 27394 DOI: 10.1021/acsami.0c08042
[23]
Zhou L 2014 Research and exploration of new Fe-based magnetostrictive materials Master Dissertation HeBei HeBei University of Technology in Chinese DOI: https://www.doc88.com/p-4713147056319.html
[24]
Johnson M T Bloemen P H den Broeder F J A de Vries J 1996 Rep. Prog. Phys. 59 1409 DOI: 10.1088/0034-4885/59/11/002
[25]
Zhang X S Zhan Q F Dai G H Liu Y W Zuo Z H Yang H L Chen B Li R W 2013 Appl. Phys. Lett. 113 17A901 DOI: 10.1063/1.4776661
[26]
Dai G H Zhan Q F Liu Y W Yang H L Zhang X S Chen B Li R W 2012 Appl. Phys. Lett. 114 173913 DOI: 10.1063/1.3696887
[27]
Khang D Y Jiang H J Huang Y Rogers J A 2006 Science 311 208 DOI: 10.1126/science.1121401
[28]
Chen X Hutchinson J W 2004 J. Appl. Mech. 71 597 DOI: 10.1115/1.1756141
[29]
Huang Z Y Hong W Suo Z 2005 J. Mech. Phys. Solids 53 2101 DOI: 10.1016/j.jmps.2005.03.007
[30]
Zhou Y L Niinomi M Akahori T 2004 Mater. Sci. Eng. 371 283 DOI: 10.1016/j.msea.2003.12.011
[31]
Chaudhury M K Finlay J A Chung J Y Callow M E Callow J A 2005 Model. Network. Biofouling 21 41 DOI: 10.1080/08927010500044377
[32]
Chan K S Ji H Wang X Hudak S J Lanning B R 2006 Mater. Sci. Eng. A 298 DOI: 10.1016/j.msea.2006.02.035
[33]
Chen Y F Mei Y Kaltofen R Mönch J I Schumann Freudenberger J Klauß H J Schmidt O G 2008 Adv. Mater. 20 3224 DOI: 10.1002/adma.200800230
[34]
Melzer M Karnaushenko D Lin G Baunack S Makarov D Schmidt O G 2015 Adv. Mater. 27 1333 DOI: 10.1002/adma.201403998
[35]
Li H H Zhan Q F Liu Y W Liu L P Yang H L Zuo Z H Shang T Wang B M Li R W 2016 ACS Nano 10 4403 DOI: 10.1021/acsnano.6b00034
[1] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[2] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[5] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[6] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[7] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[8] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[9] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[10] Dependence of switching process on the perpendicular magnetic anisotropy constant in P-MTJ
Mao-Sen Yang(杨茂森), Liang Fang(方粮), Ya-Qing Chi(池雅庆). Chin. Phys. B, 2018, 27(9): 098504.
[11] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[12] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[13] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
[14] Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition
Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2016, 25(9): 097501.
[15] Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds
Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平). Chin. Phys. B, 2016, 25(9): 096107.
No Suggested Reading articles found!