Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108201    DOI: 10.1088/1674-1056/abaedc
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Distribution of a polymer chain between two interconnected spherical cavities

Chao Wang(王超)1,†, Ying-Cai Chen(陈英才)1, Shuang Zhang(张爽)2, Hang-Kai Qi(齐航凯)3, and Meng-Bo Luo(罗孟波)3,
1 Department of Physics, Taizhou University, Taizhou 318000, China
2 College of Science, Beibu Gulf University, Qinzhou 535011, China
3 Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  

The equilibrium distribution of a polymer chain between two interconnected spherical cavities (a small one with radius Rs and a large one with radius Rl) is studied by using Monte Carlo simulation. A conformational transition from a double-cavity-occupation (DCO) state to a single-cavity-occupation (SCO) state is observed. The dependence of the critical radius of the small cavity (RsC) where the transition occurs on Rl and the polymer length N can be described by $ {R}_{{\rm{sC}}}\propto {N}^{1/3}{R}_{{\rm{l}}}^{1-1/3\nu } $ with ν being the Flory exponent, and meanwhile the equilibrium number (ms) of monomers in the small cavity for the DCO phase can be expressed as ms = N/((Rl/Rs)3 + 1), which can be quantitatively understood by using the blob picture. Moreover, in the SCO phase, the polymer is found to prefer staying in the large cavity.

Keywords:  polymer      phase transition      free energy      blob theory  
Received:  06 July 2020      Revised:  29 July 2020      Accepted manuscript online:  13 August 2020
PACS:  82.35.Jk (Copolymers, phase transitions, structure)  
  82.35.Lr (Physical properties of polymers)  
  82.20.Wt (Computational modeling; simulation)  
Corresponding Authors:  Corresponding author. E-mail: chaowang0606@126.com Corresponding author. E-mail: luomengbo@zju.edu.cn   
About author: 
†Corresponding author. E-mail: chaowang0606@126.com
‡Corresponding author. E-mail: luomengbo@zju.edu.cn
* Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20A040004) and the National Natural Science Foundation of China (Grant Nos. 11604232, 11674277, 11704210, and 11974305).

Cite this article: 

Chao Wang(王超)†, Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), and Meng-Bo Luo(罗孟波)‡ Distribution of a polymer chain between two interconnected spherical cavities 2020 Chin. Phys. B 29 108201

Fig. 1.  

A 2D sketch of the simulation model. Two spherical cavities, a small one with radius Rs and a large one with radius Rl, are connected by a small hole with diameter Dh. The polymer is confined in the two cavities.

Fig. 2.  

The SCO probability PSCO as a function of R for different N. The radius where PSCO = 0.5 is defined as the critical radius RC. The inset shows the phase diagram for the symmetric twin-cavity system. The red line shows the radius of gyration (Rg0) of polymer in free space as a function of N.

Fig. 3.  

The SCO probability PSCO as a function of the radius of the small cavity Rs for different Rl (< RC), where N = 60. The radius where PSCO = 0.5 is defined as the critical radius RsC.

Fig. 4.  

Phase diagram for the asymmetric system, where N = 60. The inset shows the dependence of RsC on $ {R}_{{\rm{l}}}^{9/4}{N}^{-3/4} $ for N = 40, 60, 80, 100, and 120. The solid black line is guide for eyes.

Fig. 5.  

The relative probabilities of the whole polymer in the small cavity (Ps/PSCO) and in the large cavity (Pl/PSCO) in the SCO phase as functions of the radius of the small cavity Rs for different Rl, where N = 60.

Fig. 6.  

The equilibrium number (ms) of monomers in the small cavity as a function of Rs for different Rl (< RC), where N = 60. The inset shows ms/N as a function of (Rl/Rs)3 for different Rl and N. The solid red line is given by Eq. (12).

[1]
Simon S M, Blobe G 1991 Cell 65 371 DOI: 10.1016/0092-8674(91)90455-8
[2]
Lingappa V R, Chaidez J, Yost C S, Hedgpeth J 1984 Proc. Natl. Acad. Sci. USA 81 456 DOI: 10.1073/pnas.81.2.456
[3]
Gabashvili I S, Gregory S T, Valle M, Grassucci R, Worbs M, Wahl M C, Dahlberg A E, Frank J 2001 Mol. Cell 8 181 DOI: 10.1016/S1097-2765(01)00293-3
[4]
Laemmli U K, Favre M 1973 J. Mol. Biol. 80 575 DOI: 10.1016/0022-2836(73)90198-8
[5]
Levy S L, Craighead H G 2010 Chem. Soc. Rev. 39 1133 DOI: 10.1039/b820266b
[6]
Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601 DOI: 10.1088/0034-4885/75/10/106601
[7]
Lacroix J, Pelofy S, Blatche C, Pillaire M J, Huet S, Chapuis C, Hoffmann J S, Bancaud A 2016 Small 12 5963 DOI: 10.1002/smll.201503795
[8]
Dorfman K D, King S B, Olson D W, Thomas J D P, Tree D R 2013 Chem. Rev. 113 2584 DOI: 10.1021/cr3002142
[9]
Sriram K K, Yeh J W, Lin Y L, Chang Y R, Chou C F 2014 Nucleic Acids Res. 42 e85 DOI: 10.1093/nar/gku254
[10]
Glasgow J, Tullman-Ercek D 2014 Appl. Microbiol. Biotechnol. 98 5847 DOI: 10.1007/s00253-014-5787-3
[11]
Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028 DOI: 10.1002/advs.201800028
[12]
Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275 DOI: 10.1039/D0NR01211D
[13]
Kasianowicz J J, Brandin E, Branton D, Deamer D W 1996 Proc. Natl. Acad. Sci. USA 93 13770 DOI: 10.1073/pnas.93.24.13770
[14]
Deamer D, Akeson M, Branton D 2016 Nat. Biotechnol. 34 518 DOI: 10.1038/nbt.3423
[15]
Yuan Z S, Liu Y M, Dai M, Yi X, Wang C Y 2020 Nanoscale Res. Lett. 15 80 DOI: 10.1186/s11671-020-03308-x
[16]
Steinbock L J, Radenovic A 2015 Nanotechnology 26 074003 DOI: 10.1088/0957-4484/26/7/074003
[17]
Tyson J R, ONeil N J, Jain M, Olsen H E, Hieter P, Snutch T P 2018 Genome Res. 28 266 DOI: 10.1101/gr.221184.117
[18]
He Y, Tsutsui M, Fan C, Taniguchi M, Kawai T 2011 ACS Nano 5 5509 DOI: 10.1021/nn201883b
[19]
Liu X, Zhang Y, Nagel R, Reisner W, Dunbar W B 2019 Small 15 1901704 DOI: 10.1002/smll.v15.30
[20]
Mulero R, Prabhu A S, Freedman K J, Kim M J 2010 J. Assoc. Lab. Autom. 15 243 DOI: 10.1016/j.jala.2010.01.009
[21]
Smith D E, Tans S J, Smith S B, Grimes S, Anderson D L, Bustamante C 2001 Nature 413 748 DOI: 10.1038/35099581
[22]
Meller A, Nivon L, Branton D 2001 Phys. Rev. Lett. 86 3435 DOI: 10.1103/PhysRevLett.86.3435
[23]
Sakaue T, Raphaël E, de Gennes P G, Brochard-Wyart F 2005 Europhys. Lett. 72 83 DOI: 10.1209/epl/i2005-10190-3
[24]
Markesteijn A P, Usta O B, Ali I, Balazs A C, Yeomans J M 2009 Soft Matter 5 4575 DOI: 10.1039/b909208k
[25]
Li X, Pivkin I V, Liang H 2013 Polymer 54 4309 DOI: 10.1016/j.polymer.2013.06.022
[26]
Klushin L I, Skvortsov A M, Hsu H P, Binder K 2008 Macromolecules 41 5890 DOI: 10.1021/ma800619n
[27]
Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601 DOI: 10.1088/0034-4885/75/10/106601
[28]
Cifra P, Benkova Z, Bleha T 2009 J. Phys. Chem. B 113 1843 DOI: 10.1021/jp806126r
[29]
Cifra P 2009 J. Chem. Phys. 131 224903 DOI: 10.1063/1.3271830
[30]
Fu Y, Wu F, Huang J H, Chen Y C, Luo M B 2019 Chin. J. Polym. Sci. 37 1290 DOI: 10.1007/s10118-019-2291-3
[31]
Benkova Z, Cifra P 2012 Macromolecules 45 2597 DOI: 10.1021/ma202730c
[32]
Benkova Z, Cifra P 2013 Biochem. Soc. T. 41 625 DOI: 10.1042/BST20120279
[33]
Manneschi C, Angeli E, Ala-Nissila T, Repetto L, Firpo G, Valbusa U 2013 Macromolecules 46 4198 DOI: 10.1021/ma4000545
[34]
Chen J Z Y 2007 Phys. Rev. Lett. 98 088302 DOI: 10.1103/PhysRevLett.98.088302
[35]
Wang C, Wu F, Zhao B, Chen Y C, Luo M B 2020 Macromolecules 53 1694 DOI: 10.1021/acs.macromol.9b02645
[36]
Muthukumar M 2001 Phys. Rev. Lett. 86 3188 DOI: 10.1103/PhysRevLett.86.3188
[37]
Turner S W P, Cabodi M, Craighead H G 2002 Phys. Rev. Lett. 88 128103 DOI: 10.1103/PhysRevLett.88.128103
[38]
Matsuyama A, Yano M, Matsuda A 2009 J. Chem. Phys. 131 105104 DOI: 10.1063/1.3225140
[39]
Shojaei H R, Muthukumar M 2017 J. Chem. Phys. 146 244901 DOI: 10.1063/1.4986961
[40]
Yang Z Y, Zhang D, Zhang L X, Chen H P, Ateeq-ur-Rehman, Liang H J 2011 Soft Matter 7 6836 DOI: 10.1039/c1sm05523b
[41]
Zhou X L, Guo F C, Li K, He L L, Zhang L X 2019 Polymers 11 1992 DOI: 10.3390/polym11121992
[42]
Chen E, Fan Y, Zhao G, Mao Z, Zhou H, Liu Y 2020 Chin. Phys. B 29 018701 DOI: 10.1088/1674-1056/ab5941
[43]
Benkova Z, Rispanova L, Cifra P 2020 Polymers 12 1064 DOI: 10.3390/polym12051064
[44]
Rispanova L, Benkova Z, Cifra P 2018 Polymers 10 1301 DOI: 10.3390/polym10121301
[45]
Benkova Z, Rispanova L, Cifra P 2017 J. Chem. Phys. 147 134907 DOI: 10.1063/1.4991649
[46]
Benkova Z, Rispanova L, Cifra P 2017 Polymers 9 313 DOI: 10.3390/polym9080313
[47]
Kong C Y, Muthukumar M 2004 J. Chem. Phys. 120 3460 DOI: 10.1063/1.1642588
[48]
Nykypanchuk D, Strey H H, Hoagland D A 2005 Macromolecules 38 145 DOI: 10.1021/ma048062n
[49]
Cifra P 2005 Macromolecules 38 3984 DOI: 10.1021/ma050147g
[50]
Cifra P, Linse P, Nies E 2005 J. Phys. Chem. B 112 8923 DOI: 10.1021/jp801782p
[51]
Milchev A, Klushin L, Skvortsov A, Binder K 2010 Macromolecules 43 6877 DOI: 10.1021/ma1003826
[52]
Sakaue T, Raphaël E 2006 Macromolecules 39 2621 DOI: 10.1021/ma0514424
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[4] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[5] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[6] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[7] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[8] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[9] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[10] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[11] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[12] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[13] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[14] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[15] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
No Suggested Reading articles found!