Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 108201    DOI: 10.1088/1674-1056/abaedc
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Distribution of a polymer chain between two interconnected spherical cavities

Chao Wang(王超)1,†(), Ying-Cai Chen(陈英才)1, Shuang Zhang(张爽)2, Hang-Kai Qi(齐航凯)3, Meng-Bo Luo(罗孟波)3,‡()
1 Department of Physics, Taizhou University, Taizhou 318000, China
2 College of Science, Beibu Gulf University, Qinzhou 535011, China
3 Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  

The equilibrium distribution of a polymer chain between two interconnected spherical cavities (a small one with radius Rs and a large one with radius Rl) is studied by using Monte Carlo simulation. A conformational transition from a double-cavity-occupation (DCO) state to a single-cavity-occupation (SCO) state is observed. The dependence of the critical radius of the small cavity (RsC) where the transition occurs on Rl and the polymer length N can be described by $ {R}_{{\rm{sC}}}\propto {N}^{1/3}{R}_{{\rm{l}}}^{1-1/3\nu } $ with ν being the Flory exponent, and meanwhile the equilibrium number (ms) of monomers in the small cavity for the DCO phase can be expressed as ms = N/((Rl/Rs)3 + 1), which can be quantitatively understood by using the blob picture. Moreover, in the SCO phase, the polymer is found to prefer staying in the large cavity.

Keywords:  polymer      phase transition      free energy      blob theory  
Received:  06 July 2020      Revised:  29 July 2020      Published:  05 October 2020
PACS:  82.35.Jk (Copolymers, phase transitions, structure)  
  82.35.Lr (Physical properties of polymers)  
  82.20.Wt (Computational modeling; simulation)  
Corresponding Authors:  Chao Wang(王超), Meng-Bo Luo(罗孟波)   
About author: 
†Corresponding author. E-mail: chaowang0606@126.com
‡Corresponding author. E-mail: luomengbo@zju.edu.cn
* Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20A040004) and the National Natural Science Foundation of China (Grant Nos. 11604232, 11674277, 11704210, and 11974305).

Cite this article: 

Chao Wang(王超), Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), Meng-Bo Luo(罗孟波) Distribution of a polymer chain between two interconnected spherical cavities 2020 Chin. Phys. B 29 108201

Fig. 1.  

A 2D sketch of the simulation model. Two spherical cavities, a small one with radius Rs and a large one with radius Rl, are connected by a small hole with diameter Dh. The polymer is confined in the two cavities.

Fig. 2.  

The SCO probability PSCO as a function of R for different N. The radius where PSCO = 0.5 is defined as the critical radius RC. The inset shows the phase diagram for the symmetric twin-cavity system. The red line shows the radius of gyration (Rg0) of polymer in free space as a function of N.

Fig. 3.  

The SCO probability PSCO as a function of the radius of the small cavity Rs for different Rl (< RC), where N = 60. The radius where PSCO = 0.5 is defined as the critical radius RsC.

Fig. 4.  

Phase diagram for the asymmetric system, where N = 60. The inset shows the dependence of RsC on $ {R}_{{\rm{l}}}^{9/4}{N}^{-3/4} $ for N = 40, 60, 80, 100, and 120. The solid black line is guide for eyes.

Fig. 5.  

The relative probabilities of the whole polymer in the small cavity (Ps/PSCO) and in the large cavity (Pl/PSCO) in the SCO phase as functions of the radius of the small cavity Rs for different Rl, where N = 60.

Fig. 6.  

The equilibrium number (ms) of monomers in the small cavity as a function of Rs for different Rl (< RC), where N = 60. The inset shows ms/N as a function of (Rl/Rs)3 for different Rl and N. The solid red line is given by Eq. (12).

[1]
Simon S M, Blobe G 1991 Cell 65 371 DOI: 10.1016/0092-8674(91)90455-8
[2]
Lingappa V R, Chaidez J, Yost C S, Hedgpeth J 1984 Proc. Natl. Acad. Sci. USA 81 456 DOI: 10.1073/pnas.81.2.456
[3]
Gabashvili I S, Gregory S T, Valle M, Grassucci R, Worbs M, Wahl M C, Dahlberg A E, Frank J 2001 Mol. Cell 8 181 DOI: 10.1016/S1097-2765(01)00293-3
[4]
Laemmli U K, Favre M 1973 J. Mol. Biol. 80 575 DOI: 10.1016/0022-2836(73)90198-8
[5]
Levy S L, Craighead H G 2010 Chem. Soc. Rev. 39 1133 DOI: 10.1039/b820266b
[6]
Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601 DOI: 10.1088/0034-4885/75/10/106601
[7]
Lacroix J, Pelofy S, Blatche C, Pillaire M J, Huet S, Chapuis C, Hoffmann J S, Bancaud A 2016 Small 12 5963 DOI: 10.1002/smll.201503795
[8]
Dorfman K D, King S B, Olson D W, Thomas J D P, Tree D R 2013 Chem. Rev. 113 2584 DOI: 10.1021/cr3002142
[9]
Sriram K K, Yeh J W, Lin Y L, Chang Y R, Chou C F 2014 Nucleic Acids Res. 42 e85 DOI: 10.1093/nar/gku254
[10]
Glasgow J, Tullman-Ercek D 2014 Appl. Microbiol. Biotechnol. 98 5847 DOI: 10.1007/s00253-014-5787-3
[11]
Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028 DOI: 10.1002/advs.201800028
[12]
Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275 DOI: 10.1039/D0NR01211D
[13]
Kasianowicz J J, Brandin E, Branton D, Deamer D W 1996 Proc. Natl. Acad. Sci. USA 93 13770 DOI: 10.1073/pnas.93.24.13770
[14]
Deamer D, Akeson M, Branton D 2016 Nat. Biotechnol. 34 518 DOI: 10.1038/nbt.3423
[15]
Yuan Z S, Liu Y M, Dai M, Yi X, Wang C Y 2020 Nanoscale Res. Lett. 15 80 DOI: 10.1186/s11671-020-03308-x
[16]
Steinbock L J, Radenovic A 2015 Nanotechnology 26 074003 DOI: 10.1088/0957-4484/26/7/074003
[17]
Tyson J R, ONeil N J, Jain M, Olsen H E, Hieter P, Snutch T P 2018 Genome Res. 28 266 DOI: 10.1101/gr.221184.117
[18]
He Y, Tsutsui M, Fan C, Taniguchi M, Kawai T 2011 ACS Nano 5 5509 DOI: 10.1021/nn201883b
[19]
Liu X, Zhang Y, Nagel R, Reisner W, Dunbar W B 2019 Small 15 1901704 DOI: 10.1002/smll.v15.30
[20]
Mulero R, Prabhu A S, Freedman K J, Kim M J 2010 J. Assoc. Lab. Autom. 15 243 DOI: 10.1016/j.jala.2010.01.009
[21]
Smith D E, Tans S J, Smith S B, Grimes S, Anderson D L, Bustamante C 2001 Nature 413 748 DOI: 10.1038/35099581
[22]
Meller A, Nivon L, Branton D 2001 Phys. Rev. Lett. 86 3435 DOI: 10.1103/PhysRevLett.86.3435
[23]
Sakaue T, Raphaël E, de Gennes P G, Brochard-Wyart F 2005 Europhys. Lett. 72 83 DOI: 10.1209/epl/i2005-10190-3
[24]
Markesteijn A P, Usta O B, Ali I, Balazs A C, Yeomans J M 2009 Soft Matter 5 4575 DOI: 10.1039/b909208k
[25]
Li X, Pivkin I V, Liang H 2013 Polymer 54 4309 DOI: 10.1016/j.polymer.2013.06.022
[26]
Klushin L I, Skvortsov A M, Hsu H P, Binder K 2008 Macromolecules 41 5890 DOI: 10.1021/ma800619n
[27]
Reisner W, Pedersen J N, Austin R H 2012 Rep. Prog. Phys. 75 106601 DOI: 10.1088/0034-4885/75/10/106601
[28]
Cifra P, Benkova Z, Bleha T 2009 J. Phys. Chem. B 113 1843 DOI: 10.1021/jp806126r
[29]
Cifra P 2009 J. Chem. Phys. 131 224903 DOI: 10.1063/1.3271830
[30]
Fu Y, Wu F, Huang J H, Chen Y C, Luo M B 2019 Chin. J. Polym. Sci. 37 1290 DOI: 10.1007/s10118-019-2291-3
[31]
Benkova Z, Cifra P 2012 Macromolecules 45 2597 DOI: 10.1021/ma202730c
[32]
Benkova Z, Cifra P 2013 Biochem. Soc. T. 41 625 DOI: 10.1042/BST20120279
[33]
Manneschi C, Angeli E, Ala-Nissila T, Repetto L, Firpo G, Valbusa U 2013 Macromolecules 46 4198 DOI: 10.1021/ma4000545
[34]
Chen J Z Y 2007 Phys. Rev. Lett. 98 088302 DOI: 10.1103/PhysRevLett.98.088302
[35]
Wang C, Wu F, Zhao B, Chen Y C, Luo M B 2020 Macromolecules 53 1694 DOI: 10.1021/acs.macromol.9b02645
[36]
Muthukumar M 2001 Phys. Rev. Lett. 86 3188 DOI: 10.1103/PhysRevLett.86.3188
[37]
Turner S W P, Cabodi M, Craighead H G 2002 Phys. Rev. Lett. 88 128103 DOI: 10.1103/PhysRevLett.88.128103
[38]
Matsuyama A, Yano M, Matsuda A 2009 J. Chem. Phys. 131 105104 DOI: 10.1063/1.3225140
[39]
Shojaei H R, Muthukumar M 2017 J. Chem. Phys. 146 244901 DOI: 10.1063/1.4986961
[40]
Yang Z Y, Zhang D, Zhang L X, Chen H P, Ateeq-ur-Rehman, Liang H J 2011 Soft Matter 7 6836 DOI: 10.1039/c1sm05523b
[41]
Zhou X L, Guo F C, Li K, He L L, Zhang L X 2019 Polymers 11 1992 DOI: 10.3390/polym11121992
[42]
Chen E, Fan Y, Zhao G, Mao Z, Zhou H, Liu Y 2020 Chin. Phys. B 29 018701 DOI: 10.1088/1674-1056/ab5941
[43]
Benkova Z, Rispanova L, Cifra P 2020 Polymers 12 1064 DOI: 10.3390/polym12051064
[44]
Rispanova L, Benkova Z, Cifra P 2018 Polymers 10 1301 DOI: 10.3390/polym10121301
[45]
Benkova Z, Rispanova L, Cifra P 2017 J. Chem. Phys. 147 134907 DOI: 10.1063/1.4991649
[46]
Benkova Z, Rispanova L, Cifra P 2017 Polymers 9 313 DOI: 10.3390/polym9080313
[47]
Kong C Y, Muthukumar M 2004 J. Chem. Phys. 120 3460 DOI: 10.1063/1.1642588
[48]
Nykypanchuk D, Strey H H, Hoagland D A 2005 Macromolecules 38 145 DOI: 10.1021/ma048062n
[49]
Cifra P 2005 Macromolecules 38 3984 DOI: 10.1021/ma050147g
[50]
Cifra P, Linse P, Nies E 2005 J. Phys. Chem. B 112 8923 DOI: 10.1021/jp801782p
[51]
Milchev A, Klushin L, Skvortsov A, Binder K 2010 Macromolecules 43 6877 DOI: 10.1021/ma1003826
[52]
Sakaue T, Raphaël E 2006 Macromolecules 39 2621 DOI: 10.1021/ma0514424
[1] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[2] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[3] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[4] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[5] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[6] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[7] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[13] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[14] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[15] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[1] Mei Feng-Xiang, Xu Xue-Jun. Form invariances and Lutzky conserved quantities for Lagrange systems[J]. Chin. Phys., 2005, 14(3): 449 -451 .
[2] Niu Chun-Hui, Li Zhi-Yuan, Ye Jia-Sheng, Gu Bei-Yuan. Application of an approximate vectorial diffraction model to analysing diffractive micro-optical elements[J]. Chin. Phys., 2005, 14(6): 1136 -1141 .
[3] Lü Jian-Qin, Zhang Zhuo. Lie algebraic analysis for the beam transport in the spherical electrostatic analyser[J]. Chin. Phys., 2007, 16(5): 1280 -1284 .
[4] Fang Chao, Wu Guo-Zhen. Dynamical potential approach to dissociation of H--C bond in HCO highly excited vibration[J]. Chin. Phys. B, 2009, 18(1): 130 -135 .
[5] Han He-Tong, Wang Qun-Shu, Xia Liang-Bin, Guan Xing-Yin, Zhang Zi-Chuan. Design and gamma sensitivity measurement of a novel dual-emitter vacuum Compton detector[J]. Chin. Phys. B, 2009, 18(11): 4777 -4780 .
[6] Zhang Yu-Qing, Tan Lei, Zhu Zhong-Hua, Xiong Zu-Zhou, Liu Li-Wei. Partial entropy change and entanglement in the mixed state for a Jaynes-Cummings model with Kerr medium[J]. Chin. Phys. B, 2010, 19(2): 24210 -024210 .
[7] Zhong Jian, Huang Si-Xun, Du Hua-Dong, Zhang Liang. Application of the Tikhonov regularization method to wind retrieval from scatterometer data I. Sensitivity analysis and simulation experiments[J]. Chin. Phys. B, 2011, 20(3): 34301 -034301 .
[8] Wang Liang, Cao Jin-Xiang, Lü You, Liu Lei, Du Yin-Chang, Wang Jian. Anomalous microwave reflection from a metal surface induced by spoof surface plasmon[J]. Chin. Phys. B, 2012, 21(1): 17301 -017301 .
[9] Shen Hua-Hai, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Yang Li, Liu Jin-Hua, Sun Qing-Qiang, Zu Xiao-Tao. Fabrication processing effects on microstructure and morphology of erbium film[J]. Chin. Phys. B, 2012, 21(7): 76101 -076101 .
[10] Han Wei, Wang Fang, Zhou Li-Dan, Feng Bin, Jia Huai-Ting, Li Ke-Yu, Xiang Yong, Zheng Wan-Guo. The effect of laser beam size on laser-induced damage performance[J]. Chin. Phys. B, 2012, 21(7): 77901 -077901 .