Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096401    DOI: 10.1088/1674-1056/aba275

Analysis of overload-based cascading failure in multilayer spatial networks

Min Zhang(张敏)1,2, Xiao-Juan Wang(王小娟)2,3,4, Lei Jin(金磊)2, Mei Song(宋梅)2, Zhong-Hua Liao(廖中华)3,4
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 Beijing Complex Product Advanced Manufacturing Engineering Research Center, Beijing Simulation Center, Beijing 100854, China;
4 State Key Laboratory of Intelligent Manufacturing System Technology, Beijing Institute of Electronic System Engineering, Beijing 100854, China
Abstract  Many complex networks in real life are embedded in space and most infrastructure networks are interdependent, such as the power system and the transport network. In this paper, we construct two cascading failure models on the multilayer spatial network. In our research, the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ), and the length r of dependency link between layers is defined according to node position. An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes. Two metrics, namely dynamic network size and dynamic network entropy, are proposed to evaluate the spatial network robustness and stability. During the cascading failure process, the spatial network evolution is analyzed, and the numbers of failure nodes caused by different reasons are also counted, respectively. Besides, we discuss the factors affecting network robustness. Simulations demonstrate that the larger the values of average degree <k>, the stronger the network robustness. As the length r decreases, the network performs better. When the probability p is small, as ζ decreases, the network robustness becomes more reliable. When p is large, the network robustness manifests better performance as ζ increases. These results provide insight into enhancing the robustness, maintaining the stability, and adjusting the difference degree between nodes of the embedded spatiality systems.
Keywords:  cascading failure      multilayer network      load distribution      spatial network      entropy  
Received:  07 May 2020      Revised:  28 June 2020      Published:  05 September 2020
PACS: (Networks)  
  64.60.ah (Percolation)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871046).
Corresponding Authors:  Xiao-Juan Wang     E-mail:

Cite this article: 

Min Zhang(张敏), Xiao-Juan Wang(王小娟), Lei Jin(金磊), Mei Song(宋梅), Zhong-Hua Liao(廖中华) Analysis of overload-based cascading failure in multilayer spatial networks 2020 Chin. Phys. B 29 096401

[1] Guo L Q, Liang C, Zocca A and Low S Proceedings of the 2018 IEEE Conference on Decision and Control, December 17-19, Florida, USA, p. 6832
[2] Wang C and Huang Z D 2019 Int. J. Mod. Phys. B 33 1950262
[3] Ren W D, Wu J J, Zhang X and Lai R 2018 IEEE Trans. Circuits Syst. 65 632
[4] Zeng Y and Xiao R B 2014 Int. J. Prod. Res. 52 6938
[5] Wang Y C and Zhang F P 2018 Nonlinear Dyn. 92 1403
[6] Zhang Z H, Yin Y F, Zhang X and Liu L J 2018 PLoS One 13 0192874
[7] Ahajjam S and Badir H 2018 Sci. Rep. 8 11932
[8] Tang L R, Yang Y, Fan B and Wu R Z 2018 Eur. Phys. J. B 91 288
[9] Wang H, Li M, Deng L and Wang B H 2018 Physica A 502 195
[10] Chen M, Song M, Zhang M, Jin L and Gong X Y 2019 Int. J. Mod. Phys. C 30 1
[11] Watts D J 2002 Proc. Natl. Acad. Sci. USA 99 5766
[12] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 463 1025
[13] Lee K M, Brummitt C D and Goh K I 2014 arXiv: 1403.3472 [physics.soc-ph]
[14] Gao J X, Buldyrev S V, Havlin S and Stanley H E 2012 Phys. Rev. E 85 066134
[15] Zhou D and Elmokashfi A 2018 Sci. Rep. 8 7433
[16] Jin L, Wang X J, Zhang Y and You J W 2018 Chin. Phys. B 27 098901
[17] Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gómezgardeñes J, Romance M, Sendiñanadal I, Wang Z and Zanin M 2014 Phys. Rep. 544 1
[18] Li M and Wang B H 2014 Chin. Phys. B 23 076402
[19] Zhou J, Huang N, Coit D W and Felder F A 2018 Reliab. Eng. Syst. Safe. 170 116
[20] Tang L, Jing K, He J and Stanley H E 2016 Physica A 443 58
[21] Wang H, Shen H and Li Z Proceedings of the 38th IEEE International Conference on Distributed Computing Systems, July 2-6, Vienna, Austria, p. 706
[22] Prima M C, Duchesne T, Fortin A, Rivest L P, Drapeau P, Laurent M H and Fortin D 2019 Funct. Ecol. 00 1
[23] Varol C and Söylemez E 2018 Socio spatial network structures in border regions: west and east borders of turkey (Germany: Springer-Verlag) pp. 207-225
[24] Qian Y Q, Yang M, Zhao X and Wang C X 2019 IEEE Trans. Multimedia 22 421
[25] Li W, Bashan A, Buldyrev S V, Stanley H E and Havlin S 2012 Phys. Rev. Lett. 108 228702
[26] Shekhtman L M, Berezin Y, Danziger M M and Havlin S 2014 Phys. Rev. E 90 012809
[27] Danziger M M, Shekhtman L M, Berezin Y and Havlin S 2016 Europhys. Lett. 115 36002
[28] Chen M, Jin L, Gong X Y, Wang X J and Sun W H 2020 Int. J. Mod. Phys. C 31 2050055
[29] Shekhtmana L M, Danzigerb M M, Vaknin D and Havlin S C R 2018 Comptes Rendus Physique 19 233
[30] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
[31] Dou B L and Zhang S Y 2011 J. Syst. Simul. 23 1459
[32] Tan Y G and Wu J 2004 Syst. Eng. Theory Pract. 6 24
[33] Chang G Y, Chang G J and Chen G H 2005 IEEE Trans. Parallel Distrib. Syst. 16 314
[34] Barabsi A L and Albert R 1999 Science 286 509
[35] Li Y, Tang G, Song L J, Xun Z P, Xia H and Hao D P 2013 Acta Phys. Sin. 62 046401 (in Chinese)
[36] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2009 Nature 464 1025
[1] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[2] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[3] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[4] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[5] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[6] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[7] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[8] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[9] Monogamy and polygamy relations of multiqubit entanglement based on unified entropy
Zhi-Xiang Jin(靳志祥), Cong-Feng Qiao(乔从丰). Chin. Phys. B, 2020, 29(2): 020305.
[10] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[11] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[12] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[13] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[14] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[15] Quantifying quantum non-Markovianity via max-relative entropy
Yu Luo(罗宇), Yongming Li(李永明). Chin. Phys. B, 2019, 28(4): 040301.
No Suggested Reading articles found!