Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018902    DOI: 10.1088/1674-1056/ac16c9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Information flow between stock markets: A Koopman decomposition approach

Semba Sherehe1,2, Huiyun Wan(万慧云)1, Changgui Gu(顾长贵)1, and Huijie Yang(杨会杰)1,†
1 Department of Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Faculty of Science, Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
Abstract  Stock markets in the world are linked by complicated and dynamical relationships into a temporal network. Extensive works have provided us with rich findings from the topological properties and their evolutionary trajectories, but the underlying dynamical mechanism is still not in order. In the present work, we proposed a technical scheme to reveal the dynamical law from the temporal network. The index records for the global stock markets form a multivariate time series. One separates the series into segments and calculates the information flows between the markets, resulting in a temporal market network representing the state and its evolution. Then the technique of the Koopman decomposition operator is adopted to find the law stored in the information flows. The results show that the stock market system has a high flexibility, i.e., it jumps easily between different states. The information flows mainly from high to low volatility stock markets. And the dynamical process of information flow is composed of many dynamic modes distribute homogenously in a wide range of periods from one month to several ten years, but there exist only nine modes dominating the macroscopic patterns.
Keywords:  transfer entropy      Koopman operator      stock markets  
Received:  14 May 2021      Revised:  10 July 2021      Accepted manuscript online:  22 July 2021
PACS:  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  05.45.Tp (Time series analysis)  
  89.75.Fb (Structures and organization in complex systems)  
  02.10.Ox (Combinatorics; graph theory)  
Fund: Project supported by the National Nature Science Foundation of China (Grant Nos. 11875042 and 11505114), the Orientational Scholar Program Sponsored by the Shanghai Education Commission, China (Grant Nos. D-USST02 and QD2015016), and the Shanghai Project for Construction of Top Disciplines, China (Grant No. USST-SYS-01).
Corresponding Authors:  Huijie Yang     E-mail:  hjyang@ustc.edu.cn

Cite this article: 

Semba Sherehe, Huiyun Wan(万慧云), Changgui Gu(顾长贵), and Huijie Yang(杨会杰) Information flow between stock markets: A Koopman decomposition approach 2022 Chin. Phys. B 31 018902

[1] Alfadhli M S, Alali M S and Alkulaib H A 2021 IOSR-JBM 23 64
[2] Velavan T P and Meyer C G 2020 Trop. Med. Int. Health 25 278
[3] Baker S R, Bloom N, Davis S J, Kost K, Sammon M and Viratyosin T 2020 The Rev. Asset Pric. Stud. 10 742
[4] Ramelli S and Wagner A 2020 Mitigating the COVID Economic Crisis: Act Fast and Do Whatever It Takes (Centre for Economic Policy Research, CEPR) p. 63
[5] Mazur M, Dang M and Vega M 2021 Financ. Res. Lett. 38 101690
[6] Yan Y, Liu M X, Zhu X W, and Chen X S 2012 Chin. Phys. Lett. 29 028901
[7] Zhao L, Wang G J, Wang M, Bao W, Li W and Stanley H E 2018 Physica A 506 1104
[8] Barrett A B, Barnett L and Seth A K 2010 Phys. Rev. E 81 041907
[9] He J and Shang P 2017 Physica A 482 772
[10] Sun Y F and Wang C Y 2018 Acta Phys. Sin. 67 148901 (in Chinese)
[11] Bashan A, Bartsch R P, Kantelhardt J W, Havlin S and Ivanov P C 2012 Nat. Commun. 3 702
[12] Bartsch R P, Liu K K, Bashan A and Ivanov P C 2015 PloS One 10 e0142143
[13] Qiu L, Jia T M and Yang H J 2016 Acta Phys. Sin. 65 198901 (in Chinese)
[14] Ivanov P C, Liu K K and Bartsch R P 2016 New J. Phys. 18 100201
[15] Zeng J, Zeng C, Xie Q, Guan L, Dong X and Yang F 2016 Physica A 462 1273
[16] Granger C W 1969 Econometrica 37 424
[17] Tang Y, Xiong J J, Luo Y and Zhang Y C 2019 Int. J. Electron. Commun. 23 85
[18] Qiu L and Yang H 2020 Physica A 559 125121
[19] Shannon C E 1948 The Bell Sys. Tech. J. 27 379
[20] Cover T M and Thomas J A 1991 Elements of information theory, 2nd ed. (New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc.) p. 12, 019604815.pdf (gbv.de)
[21] Wang Y J, Feng Q Y and Chai L H 2010 Int. J. Mod. Phys. B 24 5949
[22] Mensi W 2012 Int. J. Manag. Sci. Eng. Manag. 7 53
[23] Li X H, Shen X Y and Huang J P 2016 Chin. Phys. B 25 108903
[24] Xu M, Shang P and Huang J 2016 Commun. Nonlin. Sci. Numer. Simul. 35 17
[25] Wang Y and Shang P 2018 Nonlinear Dyn. 94 1361
[26] Wu Y, Shang P and Xia J 2021 Nonlinear Dyn. 103 741
[27] Bentes S R, Menezes R and Mendes D A 2008 Physica A 387 3826
[28] Schreiber T 2000 Phys. Rev. Lett. 85 461
[29] Bossomaier T, Barnett L, Harre M and Lizier J T 2016 An Introduction to Transfer Entropy: Information Flow in Complex Systems (SpringerLink (Online service)) p. 65
[30] Mao X and Shang P 2017 Commun. Nonlinear Sci. Numer. Simul. 47 338
[31] Zhou L, Qiu L, Gu C and Yang H 2018 Europhys. Lett. 121 48002
[32] Zheng B, Jiang X F and Ni P Y 2014 Chin. Phys. B 23 078903
[33] Qiu T, Zheng B and Chen G 2010 New J. Phys. 12 043057
[34] Li Y, Jiang X F, Tian Y, Li S P and Zheng B 2019 Physica A 515 671
[35] Shen J and Zheng B 2009 Europhys. Lett. 86 48005
[36] Schmid P and Sesterhenn J 2008 61st Annual Meeting of the APS Division of Fluid Dynamics, American Physical Society, November 23–25, 2008, San Antonio, Texas, USA, pp. MR-007
[37] Schmid P J, Meyer K E and Pust O 2009 Conference proceedings-8th International Symposium on Particle Image Velocimetry, August 25–28, 2009, Melbourne, Australia, p. 25, paper2.dvi (oliver-pust.de)
[38] Schmid P J 2010 J. Fluid Mech. 656 5
[39] Schmid P J, Li L, Juniper M P and Pust O 2011 Theor. Comput. Fluid Dyn. 25 249
[40] Hirsh S M, Harris K D, Kutz J N and Brunton B W 2020 SIAM J. Appl. Dyn. Syst. 19 1920
[41] Kutz J N, Brunton S L, Brunton B W and Proctor J L 2016 Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (SIAM-Society for Industrial and Applied Mathematics) p. 25
[42] Tu J H, Rowley C W, Luchtenburg D M, Brunton S L and Kutz J N 2014 J. Comput. Dyn. 1 391
[43] Brunton S L, Proctor J L and Kutz J N 2016 Proc. Natl. Acad. Sci. USA 113 3932
[44] Heifetz E and Farrell B F 2008 Q. J. Roy. Meteor. Soc. 134 1627
[45] Sujith R I, Juniper M P and Schmid P 2016 Int. J. Spray Combust. 8 119
[46] Nicoletti S, Fanelli D, Zagli N, Asllani M, Battistelli G, Carletti T, Chisci L, Innocenti G and Livi R 2019 Chaos: Interd. J. Nonlinear Sci. 29 083123
[1] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[2] Measuring causality by directional symbolic mutual information approach
Chen Gui (陈贵), Xie Lei (谢磊), Chu Jian (褚健). Chin. Phys. B, 2013, 22(3): 038902.
[3] Symbolic transfer entropy-based premature signal analysis
Wang Jun(王俊) and Yu Zheng-Feng(余正锋) . Chin. Phys. B, 2012, 21(1): 018702.
No Suggested Reading articles found!