Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078801    DOI: 10.1088/1674-1056/ab99ae

Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer

Shixin Hou(侯世欣)1,2,3,4,5, Biao Shi(石标)1,2,3,4,5, Pengyang Wang(王鹏阳)1,2,3,4,5, Yucheng Li(李玉成)1,2,3,4,5, Jie Zhang(张杰)1,2,3,4,5, Peirun Chen(陈沛润)1,2,3,4,5, Bingbing Chen(陈兵兵)1,2,3,4,5, Fuhua Hou(侯福华)1,2,3,4,5, Qian Huang(黄茜)1,2,3,4,5, Yi Ding(丁毅)1,2,3,4,5, Yuelong Li(李跃龙)1,2,3,4,5, Dekun Zhang(张德坤)1,2,3,4,5, Shengzhi Xu(许盛之)1,2,3,4,5, Ying Zhao(赵颖)1,2,3,4,5, Xiaodan Zhang(张晓丹)1,2,3,4,5
1 Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China;
2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China;
3 Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China;
4 Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China;
5 Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin 300350, China
Abstract  Coper thiocyanate (CuSCN) is generally considered as a very hopeful inorganic hole transport material (HTM) in semitransparent perovskite solar cells (ST-PSCs) because of its low parasitic absorption, high inherent stability, and low cost. However, the poor electrical conductivity and low work function of CuSCN lead to the insufficient hole extraction and large open-circuit voltage loss. Here, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is employed to improve conductivity of CuSCN and band alignment at the CuSCN/perovskite (PVK) interface. As a result, the average power conversion efficiency (PCE) of PSCs is boosted by ≈ 11%. In addition, benefiting from the superior transparency of p-type CuSCN HTMs, the prepared bifacial semitransparent n-i-p planar PSCs demonstrate a maximum efficiency of 14.8% and 12.5% by the illumination from the front side and back side, respectively. We believe that this developed CuSCN-based ST-PSCs will promote practical applications in building integrated photovoltaics and tandem solar cells.
Keywords:  perovskite solar cell      CuSCN      inorganic hole transport layer      organic doping      semitransparent solar cell  
Received:  05 February 2020      Revised:  19 May 2020      Published:  05 July 2020
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No. B16027), and the Science and Technology Project of Tianjin, China (Grant No. 18ZXJMTG00220).
Corresponding Authors:  Pengyang Wang, Xiaodan Zhang     E-mail:;

Cite this article: 

Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹) Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer 2020 Chin. Phys. B 29 078801

[1] Cannavale A, Hörantner M, Eperon G E, Snaith H J, Fiorito F, Ayr U and Martellotta F 2017 Appl. Energy 194 94
[2] Kim B J, Kim D H, Lee Y Y, Shin H W, Han G S, Hong J S, Mahmood K, Ahn T K, Joo Y C and Hong K S 2015 Energy Environ. Sci. 8 916
[3] Singh P and Gupta S J J 2019 Int. J. Sci. Tech. Advancements 5 33
[4] Köhnen E, Jošt M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B and Schlatmann R 2019 Sustainable Energy Fuels 3 1995
[5] Hanmandlu C, Chen C Y, Boopathi K M, Lin H W, Lai C S and Chu C W 2017 ACS. Appl. Mater. Interfaces 9 32635
[7] Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y and Zhang X D 2020 Adv. Mater. 32 1905766
[8] Wang P Y, Jiang Q, Zhao Y, Chen Y, Chu Z, Zhang X W, Zhou Y Q and You J B 2018 Sci. Bull. 63 726
[9] Li, R J, Wang P Y, Chen B B, Cui, X H, Ding Y, Li Y L, Zhang D K, Zhao Y and Zhang X D 2019 ACS Energy Lett. 5 79
[10] Shi B, Duan L, Zhao Y, Luo J and Zhang X 2019 Adv. Mater. 32 1806474
[11] Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J and Seok S 2014 J. Am. Chem. Soc. 136 7837
[12] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F and Xu Z 2018 Science 360 1442
[13] Kung P K, Li M H, Lin P Y, Chiang Y H, Chan C R, Guo T F and Chen P 2018 Adv. Mater. Interfaces 5 1800882
[14] Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J, Yan F, O'Regan B C, Amassian A and Anthopoulos T D 2013 Adv. Mater. 25 1504
[15] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Grätzel M 2017 Science 358 768
[16] Jung J W, Chueh C C and Jen A K Y 2015 Adv. Energy Mater. 5 1500486
[17] Fan L, Li Y, Yao X, Ding Y, Zhao S, Shi B, Wei C, Zhang D, Li B and Wang G 2018 ACS Appl. Energy Mater. 1 1575
[18] Wang H, Dewi H A, Koh T M, Bruno A, Mhaisalkar S G and Mathews N 2020 ACS Appl. Mater. Interfaces 12 484
[19] Jin I S, Lee J H, Noh Y W, Park S H and Jung J W 2019 Inorg. Chem. Front. 6 2158
[20] Wang S, Huang Z, Wang X F, Li Y M, Gunther M, Valenzuela S, Parikh P, Cabreros A, Xiong W and Meng Y S 2018 J. Am. Chem. Soc. 140 16720
[21] Pellaroque A, Noel N K, Habisreutinger S N, Zhang Y D, Barlow S, Marder S and Snaith H J 2017 ACS Energy Lett. 2 2044
[22] Wang Q, Bi C and Huang J 2015 Nano Energy 15 275
[23] Chen W, Wu Y H, Fan J, Djurisic A B, Liu F Z, Tam H W, Ng A, Surya C, Chan W K, Wang D and He Z B 2018 Adv. Energy Mater. 8 1703519
[24] Li M, Wang Z K, Yang Y G, Hu Y, Feng S L, Wang J M, Gao X Y and Liao L S 2016 Adv. Energy Mater. 6 1601156
[25] Zhang Y, Elawad M, Yu Z, Jiang X, Lai J and Sun L 2016 RSC Adv. 6 108888
[26] Senthilkumar N, Park S, Kang H S, Park D W and Choe Y 2011 J. Ind. Eng. Chem. 17 799
[27] Zhu L, Kim E G, Yi Y and Bredas J L 2011 Chem. Mater. 23 5149
[28] Su P Y, Huang L B, Liu J M, Chen Y F, Xiao L M, Kuang D B, Mayor M and Su C Y 2017 J. Mater. Chem. A 5 1913
[29] Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T and Yang Z 2018 Nat. Commun. 9 1625
[30] Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G and Djurišić A B 2018 Adv. Mater. 30 1800515
[31] Gelmetti I, Montcada N F, Pérez-Rodríguez A, Barrena E, Ocal C, García-Benito I, Molina-Ontoria A, Martín N, Vidal-Ferran A and Palomares E 2019 Energy Environ. Sci. 12 1309
[32] Fan L, Ding Y, Luo J, Shi B, Yao X, Wei C, Zhang D, Wang G, Sheng Y and Chen Y 2017 J. Mater. Chem. A 5 7423
[33] Chen P, Bai Y, Wang S, Lyu M, Yun J H and Wang L 2018 Adv. Funct. Mater. 28 1706923
[34] Muthu C, Agarwal S, Vijayan A, Hazra P, Jinesh K B and Nair V C 2016 Adv. Mater. Interfaces 3 1600092
[35] Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y and Zhang X 2018 ACS Sustainable Chem. Eng. 6 16806
[36] Tang Z G, Bessho T, Awai F, Kinoshita T, Maitani M M, Jono R, Murakami T N, Wang H, Kubo T, Uchida Satoshi and Segawa H 2017 Sci. Rep. 7 12183
[37] Li Z, Tinkham J, Schulz P, Yang M, Kim D H, Berry J, Sellinger A and Zhu K 2017 Adv. Energy Mater. 7 1601451
[38] Liu P, Wang W, Liu S M, Yang H G and Shao Z P 2019 Adv. Energy Mater. 9 1803017
[39] Li W, Dong H, Guo X, Li N, Li J, Niu G and Wang L 2014 J. Mater. Chem. A 2 20105
[40] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K and He Z B 2017 Adv. Energy Mater. 7 1700722
[41] Zhu S, Yao X, Ren Q, Zheng C, Li S, Tong Y, Shi B, Guo S, Fan L and Ren H 2018 Nano Energy 45 280
[1] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[2] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[3] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
[4] Effect of carrier mobility on performance of perovskite solar cells
Yi-Fan Gu(顾一帆), Hui-Jing Du(杜会静), Nan-Nan Li(李楠楠), Lei Yang(杨蕾), Chun-Yu Zhou(周春宇). Chin. Phys. B, 2019, 28(4): 048802.
[5] Factors influencing the performance of paintable carbon-based perovskite solar cells fabricated in ambient air
Wei-Kang Xu(许伟康), Feng-Xiang Chen(陈凤翔), Gong-Hui Cao(曹功辉), Jia-Qi Wang(王嘉绮), Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2018, 27(3): 038402.
[6] 420 nm thick CH3NH3PbI3-xBrx capping layers for efficient TiO2 nanorod array perovskite solar cells
Long Li(李龙), Cheng-Wu Shi(史成武), Xin-Lian Deng(邓新莲), Yan-Qing Wang(王艳青), Guan-Nan Xiao(肖冠南), Ling-Ling Ni(倪玲玲). Chin. Phys. B, 2018, 27(1): 018804.
[7] Promise of commercialization: Carbon materials for low-cost perovskite solar cells
Yu Cai(蔡宇), Lusheng Liang(梁禄生), Peng Gao(高鹏). Chin. Phys. B, 2018, 27(1): 018805.
[8] Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films
Biao Shi(石标), Sheng Guo(郭升), Changchun Wei(魏长春), Baozhang Li(李宝璋), Yi Ding(丁毅), Yuelong Li(李跃龙), Qing Wan(万青), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2018, 27(1): 018807.
[9] Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells
Sajid, A M Elseman, Jun Ji(纪军), Shangyi Dou(窦尚轶), Hao Huang(黄浩), Peng Cui(崔鹏), Dong Wei(卫东), Meicheng Li(李美成). Chin. Phys. B, 2018, 27(1): 017305.
[10] Importance of ligands on TiO2 nanocrystals for perovskite solar cells
Yao Zhao(赵耀), Yi-Cheng Zhao(赵怡程), Wen-Ke Zhou(周文可), Rui Fu(伏睿), Qi Li(李琪), Da-Peng Yu(俞大鹏), Qing Zhao(赵清). Chin. Phys. B, 2018, 27(1): 018401.
[11] Efficient design of perovskite solar cell using mixed halide and copper oxide
Navneet kour, Rajesh Mehra, Chandni. Chin. Phys. B, 2018, 27(1): 018801.
[12] TiO2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO2 nanoparticles
Jiaqi Tian(田嘉琪), Hongcui Li(李红翠), Haiyue Wang(王海月), Bo Zheng(郑博), Yebin Xue(薛叶斌), Xizhe Liu(刘喜哲). Chin. Phys. B, 2018, 27(1): 018810.
[13] O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells
En-Dong Jia(贾恩东), Xi Lou(娄茜), Chun-Lan Zhou(周春兰), Wei-Chang Hao(郝维昌), Wen-Jing Wang(王文静). Chin. Phys. B, 2017, 26(6): 068803.
[14] Improving power conversion efficiency of perovskite solar cells by cooperative LSPR of gold-silver dual nanoparticles
Peng Liu(刘鹏), Bing-chu Yang(杨兵初), Gang Liu(刘钢), Run-sheng Wu(吴闰生), Chu-jun Zhang(张楚俊), Fang Wan(万方), Shui-gen Li(李水根), Jun-liang Yang(阳军亮), Yong-li Gao(高永立), Cong-hua Zhou(周聪华). Chin. Phys. B, 2017, 26(5): 058401.
[15] Simulation design of P-I-N-type all-perovskite solar cells with high efficiency
Hui-Jing Du(杜会静), Wei-Chao Wang(王韦超), Yi-Fan Gu(顾一帆). Chin. Phys. B, 2017, 26(2): 028803.
No Suggested Reading articles found!