Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087305    DOI: 10.1088/1674-1056/ab96a4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures

Sheng Hu(胡晟)1, Ling Yang(杨凌)1, Min-Han Mi(宓珉瀚)2, Bin Hou(侯斌)2, Sheng Liu(刘晟)3, Meng Zhang(张濛)1, Mei Wu(武玫)2, Qing Zhu(朱青)1, Sheng Wu(武盛)2, Yang Lu(卢阳)2, Jie-Jie Zhu(祝杰杰)1, Xiao-Wei Zhou(周小伟)1, Ling Lv(吕玲)1, Xiao-Hua Ma(马晓华)2, Yue Hao(郝跃)2
1 State Key Discipline Laboratory of Wide Band-gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2 School of Microelectronics, Xidian University, Xi'an 710071, China;
3 Shanghai Precision Metrology and Testing Research Institute, Shanghai 201109, China
Abstract  The graded AlGaN:Si back barrier can form the majority of three-dimensional electron gases (3DEGs) at the GaN/graded AlGaN:Si heterostructure and create a composite two-dimensional (2D)-three-dimensional (3D) channel in AlGaN/GaN/graded-AlGaN:Si/GaN:C heterostructure (DH:Si/C). Frequency-dependent capacitances and conductance are measured to investigate the characteristics of the multi-temperature trap states of in DH:Si/C and AlGaN/GaN/GaN:C heterostructure (SH:C). There are fast, medium, and slow trap states in DH:Si/C, while only medium trap states exist in SH:C. The time constant/trap density for medium trap state in SH:C heterostructure are (11 μs-17.7 μs)/(1.1×1013 cm-2·eV-1-3.9×1013 cm-2·eV-1) and (8.7 μs-14.1 μs)/(0.7×1013 cm-2·eV-1-1.9×1013 cm-2·eV-1) at 300 K and 500 K respectively. The time constant/trap density for fast, medium, and slow trap states in DH:Si/C heterostructure are (4.2 μs-7.7 μs)/(1.5×1013 cm-2·eV-1-3.2×1013 cm-2·eV-1), (6.8 μs-11.8 μs)/(0.8×1013 cm-2·eV-1-2.8×1013 cm-2·eV-1), (30.1 μs-151 μs)/(7.5×1012 cm-2·eV-1-7.8×1012 cm-2·eV-1) at 300 K and (3.5 μs-6.5 μs)/(0.9×1013 cm-2·eV-1-1.8×1013 cm-2·eV-1), (4.9 μs-9.4 μs)/(0.6×1013 cm-2·eV-1-1.7×1013 cm-2·eV-1), (20.6 μs-61.9 μs)/(3.2×1012 cm-2·eV-1-3.5×1012 cm-2·eV-1) at 500 K, respectively. The DH:Si/C structure can effectively reduce the density of medium trap states compared with SH:C structure.
Keywords:  AlGaN/GaN HEMT      multi-heterostructure      composite 2D-3D channel      multi-temperature trap states     
Received:  13 March 2020      Published:  05 August 2020
PACS:  73.61.Ey (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1802100), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2020JM-191 and 2018HJCG-20), the National Natural Science Foundation of China (Grant Nos. 61904135, 61704124, and 61534007), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and 2019M663930XB), and the Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation, China (Grant No. XWYCXY-012019007).
Corresponding Authors:  Ling Yang     E-mail:  yangling@xidian.edu.cn

Cite this article: 

Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃) Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures 2020 Chin. Phys. B 29 087305

[1] Kuzuhara M and Tokuda H 2015 IEEE Trans. Electron. Dev. 62 405
[2] Ikeda N, Niyama Y, Kambayashi H, Sato Y, Nomura T, Kato S and Yoshida S 2010 Proc. IEEE 98 1151
[3] Uren M J, Möreke J and Kuball M 2012 Electron. Dev. 59 3327
[4] Chevtchenko S A, Cho E, Brunner F and Bahat T 2012 Appl. Phys. Lett. 100 223502
[5] Ikeda N, Jiang L and Yoshida S 2004 Proc. 16th ISPSD, May 24-27, 2004, Kitakyushu, Japan, p. 369
[6] Choi Y C, Pophristic M, Peres B, Spencer M G and Eastman L F 2006 J. Vac. Sci. Technol. B:Microelectron Process Phenom. 24 2601
[7] Perez-Tomas A, Fontsere A, Llobet J, Placidi M, Rennesson S, Baron N, Chenot S, Moreno J C and Cordier Y 2013 J. Appl. Phys. 113 174501
[8] Uren M J, Nash K J, Balmer R S, Martin T, Morvan E, Caillas N, Delage S L, Ducatteau D, Grimbert B and Dejaeger J C 2006 IEEE Trans. Electron. Dev. 53 395
[9] Chen Z, Pei Y, Chu R, Newman S, Brown D, Chung R, Keller S, DenBaars S P, Nakamura S and Mishra U K 2010 Phys. Status Solidi C 7 2404
[10] Niiyama Y, Kato S, Sato Y, Iwami M, Li J, Takehara H, Kambayashi H, Ikeda N and Yoshida S 2007 Proc. Mater. Res. Soc. Symp. 955 0955-I16-06
[11] Tang H, Webb J B, Bardwell J A, Raymond S, Salzman J and Uzan-Saguy C 2001 Appl. Phys. Lett. 78 757
[12] Wurfl J, Hilt O, Bahat-Treidel E, Zhytnytska R, Kotara P, Brunner F, Krueger O, Weyers M 2013 Proc. IEEE Int. Electron. Devices Meeting (IEDM), December 9-11, 2013, Washington, USA, p. 6.1.1
[13] Selvaraj J, Lawrence Selvaraj S and Egawa T 2009 Jpn. J. Appl. Phys. 48 121002
[14] Cho E, Brunner F, Zhytnytska R, Kotara P, Wurfl J and Weyers M 2011 Appl. Phys. Lett. 99 103505
[15] Gao K H, Ma X R, Zhou D B, Li S, Li Z Q, Lin T, Zhang X H and Zhou W Z 2019 Superlattices Microstruct. 135 106262
[16] Bergsten J, Thorsell M, Adolph D, Chen J T, Kordina O, Sveinbjornsson E and Rorsman N 2018 IEEE Trans. Electron. Dev. 65 2446
[17] Maeda N, Tsubaki K, Saitoh T and Kobayashi N 2001 Appl. Phys. Lett. 79 1634
[18] Chu R M, Zhou Y G, Chen K J and Lau K M 2003 Phys. Status Solidi C 7 2400
[19] Zhang W H, Xue J S, Zhang L, Zhang T, Lin Z Y and Zhang J C 2017 Appl. Phys. Lett. 110 252102
[20] See http:www.ioffe.rssi.ru/SVA/NSM/for an archive of physical properties of GaN
[21] Lang D V, Grimmeiss H G, Meijer E and Jaros M 1980 Phys. Rev. B 22 3917
[22] Look D C, Fang Z Q and Claflin B 2005 J. Cryst. Growth 281 143
[23] Park Y S, Park C J, Park C M, Na J H, Oh J S, Yoon I T, Cho H Y, Kang T W and Oh J E 2005 Appl. Phys. Lett. 86 152109
[24] Soh C B, Chua S J, Lim H F, Chi D Z, Liu W and Tripathy S 2004 J. Phys.:Condens. Matter 16 6305
[25] Chung H M, Chuang W C, Pan Y C, Tsai C C, Lee M C, Chen W H, Chen W K, Chiang C I, Lin C H and Chang H 2000 Appl. Phys. Lett. 76 879
[26] Cho H K, Kim K S, Hong C H and Lee H J 2001 J. Cryst. Growth 223 38
[27] Cho H K, Kim C S and Hong C H 2003 J. Appl. Phys. 94 1485
[28] Honda U, Yamada Y, Tokuda Y and Shiojima K 2012 Jpn. J. Appl. Phys. 51 04DF04
[29] Chen S, Honda U, Shibata T, Matsumura T, Tokuda Y, Ishikawa K, Hori M, Ueda H, Uesugi T and Kachi T 2012 J. Appl. Phys. 112 053513
[30] Kindl D, Hubik P, Kristofik J, Mares J J, Vyborny Z, Leys M R and Boeykens S 2009 J. Appl. Phys. 105 093706
[31] Umana G A, Parish G, Fichtenbaum N, Keller S, Mishra U K and Nener B D 2008 J. Electron. Mater. 37 569
[32] Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K and Miyake K 1994 J. Appl. Phys. 76 304
[1] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[2] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[3] Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs
Jianfei Li(李建飞), Yuanjie Lv(吕元杰), Changfu Li(李长富), Ziwu Ji(冀子武), Zhiyong Pang(庞智勇), Xiangang Xu(徐现刚), Mingsheng Xu(徐明升). Chin. Phys. B, 2017, 26(9): 098504.
[4] Low power fluorine plasma effects on electrical reliability of AlGaN/GaN high electron mobility transistor
Ling Yang(杨凌), Xiao-Wei Zhou(周小伟), Xiao-Hua Ma(马晓华), Ling Lv(吕玲), Yan-Rong Cao(曹艳荣), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(1): 017304.
[5] Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(8): 087304.
[6] Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate
Wei Mao(毛维), Ju-Sheng Fan(范举胜), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(12): 127305.
[7] Reverse blocking characteristics and mechanisms in Schottky-drainAlGaN/GaN HEMT with a drain field plate and floating field plates
Wei Mao(毛维), Wei-Bo She(佘伟波), Cui Yang(杨翠), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(1): 017303.
[8] Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor
Zhou Xing-Ye, Feng Zhi-Hong, Wang Yuan-Gang, Gu Guo-Dong, Song Xu-Bo, Cai Shu-Jun. Chin. Phys. B, 2015, 24(4): 048503.
[9] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua, Zhang Ya-Man, Wang Xin-Hua, Yuan Ting-Ting, Pang Lei, Chen Wei-Wei, Liu Xin-Yu. Chin. Phys. B, 2015, 24(2): 027101.
[10] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng, Fan Shuang, Chen Yong-He, Kang Di, Zhang Jian-Kun, Wang Chong, Mo Jiang-Hui, Li Liang, Ma Xiao-Hua, Zhang Jin-Cheng, Hao Yue. Chin. Phys. B, 2015, 24(2): 027302.
[11] AlGaN/GaN high electron mobility transistorwith Al2O3+BCB passivation
Zhang Sheng, Wei Ke, Yu Le, Liu Guo-Guo, Huang Sen, Wang Xin-Hua, Pang Lei, Zheng Ying-Kui, Li Yan-Kui, Ma Xiao-Hua, Sun Bing, Liu Xin-Yu. Chin. Phys. B, 2015, 24(11): 117307.
[12] A C-band 55% PAE high gain two-stage power amplifier based on AlGaN/GaN HEMT
Zheng Jia-Xin, Ma Xiao-Hua, Lu Yang, Zhao Bo-Chao, Zhang Hong-He, Zhang Meng, Cao Meng-Yi, Hao Yue. Chin. Phys. B, 2015, 24(10): 107305.
[13] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei, Zheng Da-Yong, Wang Yuan, Chen Wei-Wei, Zhang Kai, Ma Xiao-Hua, Zhang Jin-Cheng, Hao Yue. Chin. Phys. B, 2014, 23(9): 097307.
[14] An improved EEHEMT model for kink effect on AlGaN/GaN HEMT
Cao Meng-Yi, Lu Yang, Wei Jia-Xing, Chen Yong-He, Li Wei-Jun, Zheng Jia-Xin, Ma Xiao-Hua, Hao Yue. Chin. Phys. B, 2014, 23(8): 087201.
[15] Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition
Li Ming, Wang Yong, Wong Kai-Ming, Lau Kei-May. Chin. Phys. B, 2014, 23(3): 038403.
No Suggested Reading articles found!