Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070602    DOI: 10.1088/1674-1056/ab9290
Special Issue: SPECIAL TOPIC — Ultracold atom and its application in precision measurement
SPECIAL TOPIC—Ultracold atom and its application in precision measurement Prev   Next  

A transportable optical lattice clock at the National Time Service Center

De-Huan Kong(孔德欢)1,2, Zhi-Hui Wang(王志辉)3, Feng Guo(郭峰)1,2, Qiang Zhang(张强)1,2, Xiao-Tong Lu(卢晓同)1,2, Ye-Bing Wang(王叶兵)1, Hong Chang(常宏)1,2
1 CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600, China;
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences(CAS), Beijing 100049, China;
3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We report a transportable one-dimensional optical lattice clock based on 87Sr at the National Time Service Center. The transportable apparatus consists of a compact vacuum system and compact optical subsystems. The vacuum system with a size of 90 cm×20 cm×42 cm and the beam distributors are assembled on a double-layer optical breadboard. The modularized optical subsystems are integrated on independent optical breadboards. By using a 230 ms clock laser pulse, spin-polarized spectroscopy with a linewidth of 4.8 Hz is obtained which is close to the 3.9 Hz Fourier-limit linewidth. The time interleaved self-comparison frequency instability is determined to be 6.3×10-17 at an averaging time of 2000 s.
Keywords:  optical lattice clock      strontium atoms      spin-polarized spectra      instability  
Received:  20 February 2020      Revised:  30 April 2020      Published:  05 July 2020
PACS:  06.30.Ft (Time and frequency)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Jk (Atoms in optical lattices)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775220 and 11803042), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100).
Corresponding Authors:  Hong Chang     E-mail:

Cite this article: 

De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏) A transportable optical lattice clock at the National Time Service Center 2020 Chin. Phys. B 29 070602

[1] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[3] Paul S, Swanson T B, Hanssen J and Taylor J 2017 Metrologia 54 247
[4] Ludlow A D, Boyd M M, Ye J, Peik E and Schimidt P O 2015 Rev. Mod. Phys. 87 637
[5] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B G, MacNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[6] Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, MacNally R L, Souderhouse L, Robinson J M, Zhang W, Bloom B G and Ye J 2017 Science 358 90
[7] Liu H, Zhang X, Jiang K L, Wang J Q, Zhou Q, Xiong Z X, He L X and Lyu B L 2017 Chin. Phys. Lett. 34 020601
[8] Poli N, Schioppo M, Vogt S, Falke St, Sterr U, Lisdat Ch and Tino G M 2014 Appl. Phys. B 117 1107
[9] Ohmae N, Sakama S and Katori H 2019 Electr. Commun. Jpn. 102 43
[10] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[11] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
[12] Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat Ch 2018 Phys. Rev. A 98 053443
[13] Schiller S, Tino G M, Gill P, et al. 2009 Exp. Astron. 23 573
[14] Wolf P, Bordé Ch J, Clairon A, et al. 2009 Exp. Astron. 23 651
[15] Grotti J, Koller S, Vogt S, et al. 2014 Nat. Phys. 14 437
[16] Kollwitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[17] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[18] Petit G, Arias F and Panfilo G 2015 C. R. Phys. 16 480
[19] Fujieda M, Piester G, Gotoh T, Becker J, Aida M and Bauch A 2014 Metrologia 51 253
[20] Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B and Hidetoshi Katori 2016 Nat. Photon. 10 662
[21] Mcgrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[22] Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat Ch 2017 Phys. Rev. Lett. 118 073601
[23] Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H and Huang X 2017 Appl. Phys. B 123 112
[24] Lu X T, Li T, Kong D H, Wang Y B and Chang H 2019 Acta Phys. Sin. 68 233401 (in Chinese)
[25] Li T, Lu X T, Zhang Q, Kong D H, Wang Y B and Chang H 2019 Acta Phys. Sin. 68 093701 (in Chinese)
[26] Lu X T, Yin M J, Li T, Wang Y B and Chang H 2020 Appl. Sci. 10 1440
[27] Han J X, Lu X T, Lu B Q, wang Y B, Kong D H, Zhang S G and Chang H 2018 Acta Opt. Sin. 38 0702001
[28] Stephen W and Patrick G 2011 Opt. Lett. 36 3572
[29] Ido T and Katori H 2003 Phys. Rev. Lett. 91 053001
[30] Falke S, Schnatz H, Winfred J, Middlemann T, Vogt S, Weyer S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat C 2011 Metrologia 48 399
[31] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[32] Guo Y, Yin M J, Xu Q F, Wang Y B, Lu B Q, Ren J, Zhao F J and Chang H 2018 Acta Phys. Sin. 67 070601 (in Chinese)
[33] Li Y, Lin Y G, Wang Q, Yang T, Sun Z, Zang E J, Fang Z J 2018 Chin. Opt. Lett. 16 051402
[34] Lin Y G and Fang Z J 2018 Acta Phys. Sin. 67 160604 (in Chinese)
[1] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[2] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[3] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[4] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[5] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[6] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[7] The E×B drift instability in Hall thruster using 1D PIC/MCC simulation
Zahra Asadi, Mehdi Sharifian, Mojtaba Hashemzadeh, Mahmood Borhani Zarandi, Hamidreza Ghomi Marzdashti. Chin. Phys. B, 2020, 29(2): 025204.
[8] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[9] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[10] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[11] Jeans gravitational instability with κ-deformed Kaniadakis distribution in Eddington-inspired Born–Infield gravity
Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), Hui Chen(陈辉), and San-Qiu Liu(刘三秋)$. Chin. Phys. B, 2020, 29(11): 110401.
[12] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[13] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[14] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[15] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
No Suggested Reading articles found!