Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078701    DOI: 10.1088/1674-1056/ab8daf
Special Issue: SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids
SPECIAL TOPIC—Modeling and simulations for the structures and functions of proteins and nucleic acids Prev   Next  

Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation

Xiaofeng Zhang(张晓峰)1, Zilong Guo(郭子龙)1, Ping Yu(余平)1, Qiushi Li(李秋实)2, Xin Zhou(周昕)2, Hu Chen(陈虎)1
1 Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Two-state folding and down-hill folding are two kinds of protein folding dynamics for small single domain proteins. Here we apply molecular dynamics (MD) simulation to the two-state protein GB1 and down-hill folding protein gpW to reveal the relationship of their free energy landscape and folding/unfolding dynamics. Results from the steered MD simulations show that gpW is much less mechanical resistant than GB1, and the unfolding process of gpW has more variability than that of GB1 according to their force-extension curves. The potential of mean force (PMF) of GB1 and gpW obtained by the umbrella sampling simulations shows apparent difference: PMF of GB1 along the coordinate of extension exhibits a kink transition point where the slope of PMF drops suddenly, while PMF of gpW increases with extension smoothly, which are consistent with two-state folding dynamics of GB1 and downhill folding dynamics of gpW, respectively. Our results provide insight to understand the fundamental mechanism of different folding dynamics of two-state proteins and downhill folding proteins.
Keywords:  protein folding      molecular dynamics simulation      umbrella sampling      potential of mean force  
Received:  30 March 2020      Revised:  20 April 2020      Published:  05 July 2020
PACS:  87.14.E- (Proteins)  
  87.10.Tf (Molecular dynamics simulation)  
  87.15.A- (Theory, modeling, and computer simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874309, 11474237, and 11574310) and the 111 Project, China (Grant No. B16029).
Corresponding Authors:  Xin Zhou, Hu Chen     E-mail:  xzhou@ucas.ac.cn;chenhu@xmu.edu.cn

Cite this article: 

Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎) Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation 2020 Chin. Phys. B 29 078701

[1] Honig B 1999 J. Mol. Biol. 293 283
[2] Kuhlman B, Dantas G, Ireton G C, Varani G, Stoddard B L and Baker D 2003 Science 302 1364
[3] Huang P S, Boyken S E and Baker D 2016 Nature 537 320
[4] Soto C 2003 Nat. Rev. Neurosci. 4 49
[5] McCallister E L, Alm E and Baker D 2000 Nat. Struct. Mol. Biol. 7 669
[6] Chen H, Fu H, Zhu X, Cong P, Nakamura F and Yan J 2011 Biophys. J. 100 517
[7] Beck D A C and Daggett V 2004 Methods 34 112
[8] Fersht A R and Daggett V 2002 Cell 108 573
[9] Leopold P E, Montal M and Onuchic J N 1992 Proc. Natl. Acad. Sci. USA 89 8721
[10] Bryngelson J D, Onuchic J N, Socci N D and Wolynes P G 1995 Proteins 21 167
[11] Jackson S E and Fersht A R 1991 Biochemistry (Mosc.) 30 10428
[12] Garcia-Mira M M, Sadqi M, Fischer N, Sanchez-Ruiz J M and Munoz V 2002 Science 298 2191
[13] Sadqi M, Fushman D and Munoz V 2006 Nature 442 317
[14] Zhang J, Li W, Wang J, Qin M and Wang W 2008 Proteins 72 1038
[15] Ding K, Louis J M and Gronenborn A M 2004 J. Mol. Biol. 335 1299
[16] Schmidt H L, Sperling L J, Gao Y G, Wylie B J, Boettcher J M, Wilson S R and Rienstra C M 2007 J. Phys. Chem. B 111 14362
[17] De Sancho D, Mittal J and Best R B 2013 J. Chem. Theory Comput. 9 1743
[18] Cao Y and Li H 2007 Nat. Mater. 6 109
[19] Jackson S E 1998 Fold. Des. 3 81
[20] Barrick D 2009 Phys. Biol. 6 015001
[21] Li H, Wang H C, Cao Y, Sharma D and Wang M 2008 J. Mol. Biol. 379 871
[22] Puchner E M and Gaub H E 2009 Curr. Opin. Struct. Biol. 19 605
[23] Murialdo H, Xing X, Tzamtzis D, Haddad A and Gold M 2003 Biochem. Cell Biol. 81 307
[24] Sborgi L, Verma A, Munoz V and de Alba E 2011 PLoS One 6 e26409
[25] Fung A, Li P, Godoy-Ruiz R, Sanchez-Ruiz J M and Munoz V 2008 J. Am. Chem. Soc. 130 7489
[26] Lu H and Schulten K 1999 Proteins 35 453
[27] Lu H, Isralewitz B, Krammer A, Vogel V and Schulten K 1998 Biophys. J. 75 662
[28] Kaestner J 2011 Wiley Interdisciplinary Reviews-Computational Molecular Science 1 932
[29] Xu W, Li Y and Zhang Z 2012 Chin. Phys. Lett. 29 068702
[30] Souaille M and Roux B 2001 Comput. Phys. Commun. 135 40
[31] Torrie G M and Valleau J P 1977 J. Comput. Phys. 23 187
[32] Kumar S, Bouzida D, Swendsen R H, Kollman P A and Rosenberg J M 1992 J. Comput. Chem. 13 1011
[33] Kumar S, Rosenberg J M, Bouzida D, Swendsen R H and Kollman P A 1995 J. Comput. Chem. 16 1339
[34] Chen H, Yuan G, Winardhi R S, Yao M, Popa I, Fernandez J M and Yan J 2015 J. Am. Chem. Soc. 137 3540
[35] Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J and Chen H 2017 Angew. Chem. 129 5582
[1] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[2] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[3] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[4] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[5] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[6] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[7] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[8] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[9] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[10] Application of topological soliton in modeling protein folding: Recent progress and perspective
Xu-Biao Peng(彭绪彪)†, Jiao-Jiao Liu(刘娇娇), Jin Dai(戴劲), Antti J Niemi‡, and Jian-Feng He(何建锋)§. Chin. Phys. B, 2020, 29(10): 108705.
[11] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
[12] Quantum intelligence on protein folding pathways
Wen-Wen Mao(毛雯雯), Li-Hua Lv(吕丽花), Yong-Yun Ji(季永运), You-Quan Li(李有泉). Chin. Phys. B, 2020, 29(1): 018702.
[13] Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane
Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲). Chin. Phys. B, 2019, 28(4): 048102.
[14] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[15] Approximate expression of Young's equation and molecular dynamics simulation for its applicability
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Wei-Wei Liu(刘伟伟), Ru-Zeng Zhu(朱如曾), Qian Ping(钱萍). Chin. Phys. B, 2019, 28(1): 016801.
No Suggested Reading articles found!