Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 068102    DOI: 10.1088/1674-1056/ab889a

Facile and fast growth of high mobility nanoribbons of ZrTe5

Jingyue Wang(王璟岳)1, Jingjing Niu(牛晶晶)1, Xinqi Li(李新祺)1, Xiumei Ma(马秀梅)1, Yuan Yao(姚湲)2, Xiaosong Wu(吴孝松)1,3,4
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Frontiers Science Center for Nano-optoelectronics and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China;
4 Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China
Abstract  Recently, ZrTe5 has received a lot of attention as it exhibits various topological phases, such as weak and strong topological insulators, a Dirac semimetal, a three-dimensional quantum Hall state, and a quantum spin Hall insulator in the monolayer limit. While most of studies have been focused on the three-dimensional bulk material, it is highly desired to obtain nanostructured materials due to their advantages in device applications. We report the synthesis and characterizations of ZrTe5 nanoribbons. Via a silicon-assisted chemical vapor transport method, long nanoribbons with thickness as thin as 20 nm can be grown. The growth rate is over an order of magnitude faster than the previous method for the bulk crystals. Moreover, transport studies show that the nanoribbons are of low unintentional doping and high carrier mobility, over 30000 cm2/V·s, which enable reliable determination of the Berry phase of π in the ac plane from quantum oscillations. Our method holds great potential in growth of high quality ultra-thin nanostructures of ZrTe5.
Keywords:  ZrTe5 nanoribbons      growth      chemical vapor transport      mobility  
Received:  09 March 2020      Revised:  02 April 2020      Accepted manuscript online: 
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300600, 2016YFA0300802, 2013CB932904, and 2016YFA0202500) and the National Natural Science Foundation of China (Grant Nos. 11574005, 11774009, and 11234001).
Corresponding Authors:  Xiaosong Wu     E-mail:

Cite this article: 

Jingyue Wang(王璟岳), Jingjing Niu(牛晶晶), Xinqi Li(李新祺), Xiumei Ma(马秀梅), Yuan Yao(姚湲), Xiaosong Wu(吴孝松) Facile and fast growth of high mobility nanoribbons of ZrTe5 2020 Chin. Phys. B 29 068102

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Kitaev A 2009 AIP Conf. Proc. 1134 22
[4] Roy R 2008 arXiv:0803.2868 [cond-mat.mes-hall]
[5] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[6] Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001
[7] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[8] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[9] Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 037301
[10] Wang H and Wang J 2018 Chin. Phys. B 27 107402
[11] Zheng G, Lu J, Zhu X, Ning W, Han Y, Zhang H, Zhang J, Xi C, Yang J, Du H, Yang K, Zhang Y and Tian M 2016 Phys. Rev. B 93 115414
[12] Yu W, Jiang Y, Yang J, Dun Z L, Zhou H D, Jiang Z, Lu P and Pan W 2016 Sci. Rep. 6 35357
[13] Zhou Y, Wu J, Ning W, Li N, Du Y, Chen X, Zhang R, Chi Z, Wang X, Zhu X, Lu P, Ji C, Wan X, Yang Z, Sun J, Yang W, Tian M, Zhang Y and Mao H 2016 Proc. Natl. Acad. Sci. USA 113 2904
[14] Chen R Y, Zhang S J, Schneeloch J A, Zhang C, Li Q, Gu G D and Wang N L 2015 Phys. Rev. B 92 075107
[15] Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosic I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550
[16] Yuan X, Zhang C, Liu Y, Narayan A, Song C, Shen S, Sui X, Xu J, Yu H, An Z, Zhao J, Sanvito S, Yan H and Xiu F 2016 NPG Asia Mater 8 e325
[17] Wu R, Ma J Z, Nie S M, Zhao L X, Huang X, Yin J X, Fu B B, Richard P, Chen G F, Fang Z, Dai X, Weng H M, Qian T, Ding H and Pan S H 2016 Phys. Rev. X 6 021017
[18] Pariari A and Mandal P 2017 Sci. Rep. 7 40327
[19] Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404
[20] Manzoni G, Gragnaniello L, Autés G, Kuhn T, Sterzi A, Cilento F, Zacchigna M, Enenkel V, Vobornik I, Barba L, Bisti F, Bugnon Ph, Magrez A, Strocov V N, Berger H, Yazyev O V, Fonin M, Parmigiani F and Crepaldi A 2016 Phys. Rev. Lett. 117 237601
[21] Li X B, Huang W K, Lv Y Y, Zhang K W, Yang C L, Zhang B B, Chen Y B, Yao S H, Zhou J, Lu M H, Sheng L, Li S C, Jia J F, Xue Q K, Chen Y F and Xing D Y 2016 Phys. Rev. Lett. 116 176803
[22] Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z and Zhang L 2019 Nature 569 537
[23] Weng H, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[24] Niu J, Wang J, He Z, Zhang C, Li X, Cai T, Ma X, Jia S, Yu D and Wu X 2017 Phys. Rev. B 95 035420
[25] Lu J, Zheng G, Zhu X, Ning W, Zhang H, Yang J, Du H, Yang K, Lu H, Zhang Y and Tian M 2017 Phys. Rev. B 95 125135
[26] Zhang J L, Guo C Y, Zhu X D, Ma L, Zheng G L, Wang Y Q, Pi L, Chen Y, Yuan H Q and Tian M L 2017 Phys. Rev. Lett. 118 206601
[27] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512
[28] Tang F, Wang P, Wang P, Gan Y, Wang L, Zhang W and Zhang L 2018 Chin. Phys. B 27 087307
[29] Chi H, Zhang C, Gu G, Kharzeev D E, Dai X and Li Q 2017 New J. Phys. 19 015005
[30] Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X, Sanvito S, Xia Z, Li L, Wang Z and Xiu F 2016 Nat. Commun. 7 12516
[31] Imura K I, Okamoto M, Yoshimura Y, Takane Y and Ohtsuki T 2012 Phys. Rev. B 86 245436
[32] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[33] Zhou J J, Feng W, Liu C C, Guan S and Yao Y 2014 Nano Lett. 14 4767
[34] Zhang Y and Vishwanath A 2010 Phys. Rev. Lett. 105 206601
[35] Peng H L, Lai K J, Kong D S, Meister S, Chen Y L, Qi X L, Zhang S C, Shen Z X and Cui Y 2010 Nat. Mater. 9 225
[36] Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 Nano Lett. 14 2815
[37] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[38] Sodeck H, Mikler H and Komarek K 1979 Monatshefte For Chem. Chem. Mon. 110 1
[39] Levy F and Berger H 1983 J. Cryst. Growth 61 61
[40] Taguchi I, Grisel A and Levy F 1983 Solid State Commun. 46 299
[41] Okada S, Sambongi T, Ido M, Tazuke Y, Aoki R and Fujita O 1982 J. Phys. Soc. Jpn. 51 460
[42] DiSalvo F J, Fleming R M and Waszczak J 1981 Phys. Rev. B 24 2935
[43] Tritt T M, Lowhorn N D, Littleton R T, Pope A, Feger C R and Kolis J W 1999 Phys. Rev. B 60 7816
[44] Manzoni G, Sterzi A, Crepaldi A, Diego M, Cilento F, Zacchigna M, Bugnon P, Berger H, Magrez A, Grioni M and Parmigiani F 2015 Phys. Rev. Lett. 115 207402
[45] Xu B, Zhao L X, Marsik P, Sheveleva E, Lyzwa F, Dai Y M, Chen G F, Qiu X G and Bernhard C 2018 Phys. Rev. Lett. 121 187401
[46] Wu M, Zhang H, Zhu X, Lu J, Zheng G, Gao W, Han Y, Zhou J, Ning W and Tian M 2019 Chin. Phys. Lett. 36 067201
[47] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
[48] Wang J Y, Niu J J, Yan B M, Li X Q, Bi R, Yao Y, Yu D P and Wu X S 2018 Proc. Natl. Acad. Sci. USA 115 9145
[49] Chen Z G, Chen R Y, Zhong R D, Schneeloch J, Zhang C, Huang Y, Qu F, Yu R, Li Q, Gu G D and Wang N L 2017 Proc. Natl. Acad. Sci. USA 114 816
[50] Kamm G N, Gillespie D J, Ehrlich A C, Wieting T J and Levy F 1985 Phys. Rev. B 31 7617
[51] Zheng G, Zhu X, Lu J, Ning W, Zhang H, Gao W, Han Y, Yang J, Du H, Yang K, Zhang Y and Tian M 2017 Phys. Rev. B 96 121401
[1] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[4] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[7] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[8] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[9] Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
Feng Xiao(肖峰), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Zi-Qing Lu(陆子晴), and Fan Xiao(肖帆). Chin. Phys. B, 2022, 31(4): 048101.
[10] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[11] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[12] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[13] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[14] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[15] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[3] Guo Wei-Bin, Wang Neng-Chao, Shi Bao-Chang, Guo Zhao-Li. Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder[J]. Chin. Phys. B, 2003, 12(1): 67 -74 .
[4] Shi Bing-Ren. Analytic description of tokamak equilibrium sustained by high fraction bootstrap current[J]. Chin. Phys., 2003, 12(6): 626 -631 .
[5] Cai Jian-Le, Jia Li-Qun, Luo Shao-Kai. A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems[J]. Chin. Phys. B, 2003, 12(8): 841 -845 .
[6] Feng Guo-Lin, Dong Wen-Jie, Jia Xiao-Jing. Application of retrospective time integration scheme to the prediction of torrential rain[J]. Chin. Phys. B, 2004, 13(3): 413 -422 .
[7] Wu Bai-Zhi, Xu You-Sheng, Liu Yang, Huang Guo-Xiang. Numerical simulation for separation of multi-phase immiscible fluids in porous media[J]. Chin. Phys., 2005, 14(10): 2046 -2051 .
[8] Wang Jing(王静), Li Yuan-Cheng(李元成), Xia Li-Li(夏丽莉), and Hou Qi-Bao(后其宝). Lie-form invariance of non-holonomic systems with unilateral constraints[J]. Chin. Phys., 2006, 15(8): 1665 -1668 .
[9] Wang Jian(王建), Zhang Wen-Dong(张文栋), Xue Chen-Yang(薛晨阳), Xiong Ji-Jun(熊继军), Liu Jun(刘俊), and Xie Bin(谢斌) . Pressure effects in AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes for application in micromachined sensors[J]. Chin. Phys., 2007, 16(4): 1150 -1154 .
[10] Wang Yun-Hua(王运华), Zhang Yan-Min(张彦敏), He Ming-Xia(贺明霞), and Guo Li-Xin(郭立新). Solution of scattering from rough surface with a 2Dtarget above it by a hybrid method based on the reciprocity theorem and the forward--ackward method[J]. Chin. Phys. B, 2008, 17(10): 3696 -3703 .