Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 053104    DOI: 10.1088/1674-1056/ab8205
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Ab initio studies on ammonium iodine under high pressure

Mengya Lu(鲁梦雅)1, Yanping Huang(黄艳萍)1, Fubo Tian(田夫波)1, Da Li(李达)1, Defang Duan(段德芳)1, Qiang Zhou(周强)1, Tian Cui(崔田)2,1
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Ammonium iodine (NH4I) as an important member of hydrogen-rich compounds has attracted a great deal of attention owing to its interesting structural changes triggered by the relative orientations of adjacent ammonium ions. Previous studies of ammonium iodide have remained in the low pressure range experimentally, which we first extended to so high pressure (250 GPa). We have investigated the structures of ammonium iodine under high pressure through ab initio evolutionary algorithm and total energy calculations based on density functional theory. The static enthalpy calculations show that phase V is stable until 85 GPa where a new phase Ibam is identified. Calculations of phonon spectra show that the Ibam phase is stable between 85 GPa and 101 GPa and the Cm phase is stable up to 130 GPa. In addition, ammonium iodine dissociates into NH3, H2, and I2 at 74 GPa. Subsequently, we analyzed phonon spectra and electronic band structures, finding that phonon softening is not the reason of dissociation and NH4I is always a semiconductor within the pressure range.
Keywords:  hydrogen-rich compounds      high pressure      phase transition  
Received:  06 January 2020      Revised:  13 March 2020      Published:  05 May 2020
PACS:  31.15.A- (Ab initio calculations)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574109, 51632002, 51572108, 91745203, and 11574112), the National Key Research and Development Program of China (Grant Nos. 2016YFB0201204 and 2018YFA0305900), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_15R23), and the National Fund for Fostering Talents of Basic Science of China (Grant No. J1103202).
Corresponding Authors:  Fubo Tian, Tian Cui     E-mail:  tianfubo@jlu.edu.cn;cuitian@jlu.edu.cn

Cite this article: 

Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田) Ab initio studies on ammonium iodine under high pressure 2020 Chin. Phys. B 29 053104

[1] Duan D F, Tian F B, He Z, Meng X, Wang L C, Chen C B, Zhao X S, Liu B B and Cui T 2010 J. Chem. Phys. 133 074509
[2] Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A, Massidda S and Gross E K U 2008 Phys. Rev. Lett. 100 257001
[3] McMahon J M and Ceperley D M 2011 Phys. Rev. B 84 144515
[4] Drozdov A, Eremets M and Troyan I 2015 arXiv:1508.06224vl
[5] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 107001
[6] Dias R P and Silvera I F 2017 Science 355 715
[7] N W 2004 Phys. Rev. Lett. 92 187002
[8] Duan D F, Huang X L, Tian F B, Li D, Yu H Y, Liu Y X, Ma Y B, Liu B B and Cui T 2015 Phys. Rev. B 91 180502
[9] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S 2015 Nature 525 73
[10] Liu H Y, Naumov I I, Geballe Z M, Somayazulu M, John S T and Hemely R J 2018 Phys. Rev. B 98 100102
[11] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemely R J 2019 Phys. Rev. Lett. 122 027001
[12] Heil C, Simone D C, Bachelet G B and Boeri L 2019 Phys. Rev. B 99 220502
[13] Pistorius C W 1976 Prog. Solid State Ch. 11 1
[14] Hochheimer H D, Spanner E and Strauch D 1976 J. Chem. Phys. 64 1583
[15] Heyns A M, Hirsch K R and Holzapfel W B 1980 J. Chem. Phys. 73 105
[16] Pistorius C W F T 1969 J. Chem. Phys. 50 1436
[17] Heyns A M, Hirsch K R and Holzapfel W B 1979 Solid. State. Commun. 29 351
[18] Stevenson R 1961 J. Chem. Phys. 34 346
[19] Press W, Eckert J, Cox D E, Rotter C and Kamitakahara W 1976 Phys. Rev. B 14 1983
[20] Leung R C, Zahradnik C and Garland C W 1979 Phys. Rev. B 19 2612
[21] Andersson P and Ross R G 1987 J. Phys. C. Solid. State. 20 4737
[22] Huang Y P, Huang X L, Wang L, Wu G, Duan D F, Bao K, Zhou Q, Liu B B and Cui T 2015 RSC. Adv. 5 40336
[23] Yamada Y, Mori M and Noda Y 1972 J. Phys. Soc. Jpn. 32 1565
[24] Vaks V G and Schneider V E 1976 Phys. Status Solidi (a) 35 61
[25] Hüller A 1974 Z. Phys. 270 343
[26] Jeon S J, Porter R F, Vohra Y K and Ruoff A L 1987 Phys. Rev. B Condens. Matter 35 4954
[27] Seymour R T and A W 1970 Acta Crystall B-Stru 26 1487
[28] Goyal P S and Dasannacharya B A 1979 J. Phys. C. Solid. State. 12 219
[29] Kozlenko D P, Glazkov V P, Savenko B N, Somenkov V A and Hull S 2000 Int. J. High Press. Res. 17 235
[30] Glazkov V P, Kozlenko D P, Savenko B N and Somenkov V A 2000 J. Exp. Theor. Phys. 90 319
[31] Glazkov V P, Kozlenko D P, Savenko B N, Somenkov V A and Telepnev A S 2001 J. Exp. Theor. Phys. Lett. 74 415
[32] Kolomiichuk V N 1966 Sov. Phys. Crystallogr. 10 475
[33] Durig J R and Antion D J 1969 J. Chem. Phys. 51 3639
[34] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[35] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chemical Research 44 227
[36] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[41] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[42] Levy H A and Peterson S W 1953 J. Am. Chem. Soc. 75 1536
[43] Balagurov A M, Kozlenko D P, Savenko B N, Glazkov V P, Somenkov V A and Hull S 1999 Phys. B: Condens. Matter 265 92
[44] Binns J, Liu X D, Philip D S, Afonina V, Gregoryanz E and Howie R T 2017 Phys. Rev. B 96 144105
[45] Tian F B, Li D, Duan D F, Chen C B, He Z, Sha X J, Zhao Z L, Liu B B and Cui T 2014 Chin. Sci. Bull. 59 5272
[1] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[2] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[3] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[4] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[5] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[6] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[7] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[8] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[11] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[12] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[13] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[14] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[15] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
No Suggested Reading articles found!