Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040202    DOI: 10.1088/1674-1056/ab7803
GENERAL Prev   Next  

Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions

Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒)
Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Electrical and Information Engineering, Wuhan Institute of Technology, Wuhan 430205, China
Abstract  The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks (FDMNN) with parameters uncertainty and discontinuous activation functions. The relevant results are obtained under the framework of Filippov for such systems. Firstly, the novel feedback controller, which includes the discontinuous functions and time delays, is proposed to investigate such systems. Secondly, the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique. At the same time, the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated. In addition, by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems, the global asymptotic synchronization is achieved as a corollary. Finally, a numerical example is given to indicate the correctness of the obtained conclusions.
Keywords:  fractional-order delayed memristive neural networks (FDMNN)      parameters uncertainty      discontinuous activation functions      finite-time Mittag-Leffler synchronization  
Received:  31 December 2019      Revised:  14 February 2020      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703312 and 61703313).
Corresponding Authors:  Zhixia Ding     E-mail:  zxding89@163.com

Cite this article: 

Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒) Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions 2020 Chin. Phys. B 29 040202

[1] Zhu S, Wang L D and Duan S K 2017 Neurocomputing 227 147
[2] Hu X F, Feng G, Duan S K and Liu L 2016 IEEE Trans. Neural Netw. Learn. Syst. 28 1889
[3] Li T S, Duan S K, Liu J and Wang L D 2018 Neural Computing and Applications 30 1939
[4] Wen S P, Zeng Z G, Huang T W and Zhang Y D 2013 IEEE Trans. Fuzzy Syst. 22 1704
[5] Wu A L and Zeng Z G 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1919
[6] Xiao J Y and Zhong S M 2018 Appl. Math. Comput. 323 145
[7] Wu A L and Zeng Z G 2014 Neural Netw. 49 11
[8] Yang X S, Cao J D and Liang J L 2016 IEEE Trans. Neural Netw. Learn. Syst. 28 1878
[9] Ding Z X, Zeng Z G, Zhang H, Wang L M and Wang L H 2019 Neurocomputing 351 51
[10] Ding Z X, Zeng Z G and Wang L M 2017 IEEE Trans. Neural Netw. Learn. Syst. 29 1477
[11] Garza-Flores E and Alvarez-Borrego J 2018 J. Mod. Opt. 65 1634
[12] Zhang Y D, Yang X J, Cattani C, Rao R V, Wang S H and Phillips P 2016 Entropy 18 77
[13] Shen K M and Yu W 2018 IEEE Trans. Signal Process. 66 2631
[14] Mashayekhi S, Miles P, Hussaini M Y and Oates W S 2018 J. Mech. Phys. Solids 111 134
[15] Wu A L and Zeng Z G 2017 IEEE Trans. Neural Netw. Learn. Syst. 28 206
[16] Wei H Z, Li R X, Chen C R and Tu Z W 2017 Neural Process. Lett. 45 379
[17] Bao H B, Cao J D and Kurths J 2018 Nonlinear Dyn. 94 1215
[18] Wan L G, Zhan X S, Gao H L, Yang Q S, Han T and Ye M J 2019 Int. J. Syst. Sci. 50 1
[19] Chen L P, Huang T W, Machado J A, Lopes A M, Chai Y and Wu R C 2019 Neural Netw. 118 289
[20] Chen L P, Wu R C, Cao J D and Liu J B 2015 Neural Netw. 71 37
[21] Zhang W W, Cao J D, Wu R C, Chen D Y and Alsaadi F E 2018 Chaos, Solitons and Fractals 117 76
[22] Zhao W and Wu H Q 2018 Adv. Difference. Equ. 2018 213
[23] Chen C and Ding Z X 2019 Discrete Dyn. Nat. Soc. 2019 8743482
[24] Chen L P, Wu R C, He Y G and Yin L S 2015 Appl. Math. Comput. 257 274
[25] Forti M and Nistri P 2003 IEEE Trans. Circuits Syst. I-Regul. Pap. 50 1421
[26] Zhang L Z 2019 Physica A 531 121756
[27] Garcia-Ojalvo J and Roy R 2001 Phys. Rev. Lett. 86 5204
[28] Wu G C, Deng Z G, Baleanu D and Zeng D Q 2019 An Interdisciplinary Journal of Nonlinear Science 29 083103
[29] Li R and Chu T G 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 840
[30] Chen L P, Cao J D and Wu R C, Tenreiro Machado J A, Lopes A M and Yang H J 2017 Neural Netw. 94 76
[31] Ding Z X and Shen Y 2016 Neural Netw. 76 97
[32] Chen C, Li L X, Peng H P, Yang Y X and Li T 2017 Neurocomputing 235 83
[33] Chen J J, Zeng Z G and Jiang P 2014 Neural Netw. 51 1
[34] Zhang W W, Cao J D, Alsaedi A and Alsaadi F E 2017 Math. Probl. Eng. 2017 1804383
[35] Jia Y, Wu H Q and Cao J D 2019 Appl. Math. Comput. 30 124929
[36] Peng X and Wu H Q 2018 Neural Comput. Appl. 2018
[37] Zheng M W, Li L X, Peng H P, Xiao J H, Yang Y X, Zhang Y P and Zhao H. 2018 Commun. Nonlinear Sci. Numer. Simul. 59 272
[38] Xiao J Y, Zhong S M, Li Y T and Xu F 2017 Neurocomputing 219 431
[39] Li X F, Fang J, Zhang W B and Li H Y 2018 Neurocomputing 316 284
[40] Zheng M W, Li L X, Peng H P, Xiao J H, Yang Y X and Zhao H 2017 Nonlinear Dyn. 89 2641
[41] Velmurugan G, Rakkiyappan R and Cao J D 2016 Neural Netw. 73 36
[42] Diethelm K 2010 Springer Science & Business Media (Berlin: Springer-Verlag) p. 49
[43] Zhang S, Yu Y G and Wang H 2015 Nonlinear Anal.-Hybrid Syst. 16 104
[44] Gu Y J, Yu Y G and Wang H 2016 Journal of the Franklin Institute 353 3657
[45] Filippov A F 2013 Springer Science & Business Media (Netherlands: Springer) p. 48
[46] Aubin J and Cellina A 2012 Springer Science & Business Media (Berlin: Springer-Verlag) p. 139
[47] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
[48] Li Y, Chen Y Q and Podlubny I 2010 Comput. Math. Appl. 59 1810
[49] Lam H and Leung F F 2006 Int. J. Bifur. Chaos 16 1435
[50] Bao H B and Cao J D 2015 Neural Netw. 63 1
[51] Peng X, Wu H Q and Cao J D 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 2123
[52] Peng X, Wu H Q, Song K and Shi J X 2017 Neural Netw. 94 46
[1] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[2] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[3] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[4] Effect of degree correlation on edge controllability of real networks
Shu-Lin Liu(刘树林) and Shao-Peng Pang(庞少鹏)†. Chin. Phys. B, 2020, 29(10): 100202.
[5] Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network
Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏). Chin. Phys. B, 2020, 29(5): 050701.
[6] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[7] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[8] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[9] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[10] Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm
Ying-Wen Zhang(张潆文), Jin-Huan Wang(王金环), Yong Xu(徐勇), De-Dong Yang(杨德东). Chin. Phys. B, 2019, 28(3): 030501.
[11] Distance-based formation tracking control of multi-agent systems with double-integrator dynamics
Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭). Chin. Phys. B, 2018, 27(6): 060202.
[12] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[13] Robust stability characterizations of active metamaterials with non-Foster loads
Yi-Feng Fan(范逸风), Yong-Zhi Sun(孙永志). Chin. Phys. B, 2018, 27(2): 028102.
[14] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[15] A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems
Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛). Chin. Phys. B, 2018, 27(1): 010203.
No Suggested Reading articles found!