|
|
Reconciliation for CV-QKD using globally-coupled LDPC codes |
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端) |
School of Computer Science and Engineering, Central South University, Changsha 410083, China |
|
|
Abstract Reconciliation is a necessary step in postprocessing of continuous-variable quantum key distribution (CV-QKD) system. We use globally coupled low-density parity-check (GC-LDPC) codes in reconciliation to extract a precise secret key from the raw keys over the authenticated classical public channel between two users. GC-LDPC codes have excellent performance over both the additive Gaussian white noise and binary-erasure channels. The reconciliation based on GC-LDPC codes can improve the reconciliation efficiency to 95.42% and reduce the frame error rate to 3.25×10-3. Using distillation, the decoding speed can achieve 23.8 Mbits/s and decrease the cost of memory. Given decoding speed and low memory usage, this makes the proposed reconciliation method viable approach for high-speed CV-QKD system.
|
Received: 26 November 2019
Revised: 13 January 2020
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61801522, 61972418, and 61872390), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2019JJ40352 and 2017JJ3415), and the Special Foundation for Distinguished Young Scientists of Changsha City, China (Grant No. kq1905058). |
Corresponding Authors:
Duan Huang
E-mail: duanhuang@csu.edu.cn
|
Cite this article:
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端) Reconciliation for CV-QKD using globally-coupled LDPC codes 2020 Chin. Phys. B 29 040301
|
[1] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[2] |
Wang X Y, Zhang Y C, Yu S and Guo H 2018 Sci. Rep. 8 10543
|
[3] |
Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
|
[4] |
Lin D K, Huang D, Huang P, Peng J Y and Zeng G H 2015 Int. J. Quantum. Inf. 13.02 100501
|
[5] |
Qian Y J, He D Y, Wang S, Chen W, Yin Z Q, Guo G C and Han Z F 2019 Optica 6 1178
|
[6] |
Wang S, Chen W, Yin Z Q, He D Y, Hui C, Hao P L, Fan-Yan G J, Wang C, Zhang L J, Kuang J, Liu S F, Zhou Z, Wang Y G, Guo G C and Han Z F 2018 Opt. Lett. 43 2030
|
[7] |
Wang S, Yin Z Q, Chau H F, Chen W, Wang C, Guo G C and Han Z F 2018 Quantum Science and Technology 3 025006
|
[8] |
Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C and Han Z F 2019 Phys. Rev. X 9 021046
|
[9] |
Yin Z Q, Wang S, Chen W, Han Y G, Wang R, Guo G C and Han Z F 2018 Nat. Commun. 9 457
|
[10] |
Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Phoron. 9.12 832
|
[11] |
Wang S, Chen W, Guo J F, Yin Z Q, Li H W, Zhou Z, Guo G C and Han Z F 2012 Opt. Lett. 37 1008
|
[12] |
Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Song X T, Li F Y, Wang D, Chen H, Han Y G, Huang J Z, Guo J F, Hao P L, Li M, Zhang C M, Liu D, Liang W Y, Miao C H, Wu P, Guo G C and Han Z F 2014 Opt. Express 22 21739
|
[13] |
Assche G V, Cardinal J and Cerf N J 2004 IEEE Trans. Inf. Theory 50 394
|
[14] |
Furrer F 2014 Phys. Rev. A 90 042325
|
[15] |
Milicevic M, Chen F, Zhang L M and Gulak P G 2018 Npj. Quantum Inform. 4 21
|
[16] |
Diamanti E, Lo H K, Qi B and Yuan Z 2016 Npj. Quantum Inform. 2 16025
|
[17] |
Huang D, Huang P, Li H S, Wang T, Zhou Y M and Zeng G H 2016 Opt. Lett. 41 3511
|
[18] |
Huang D, Huang P, Wang T, Li H S, Zhou Y M and Zeng G H 2016 Phys. Rev. A 94 032305
|
[19] |
Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
|
[20] |
Tang G Z, Sun S H and Li C Y 2019 Chin. Phys. Lett. 36 70301
|
[21] |
Jiang X Q, Huang P, Huang D, Lin D K and Zeng G H 2018 Phys. Rev. A 95 022318
|
[22] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 175
|
[23] |
Guo Y, Su Y, Zhou J, Zhang L and Huang D 2019 Chin. Phys. B 28 010305
|
[24] |
Wang C, Huang P, Huang D, Lin D K and Zeng G H 2016 Phys. Rev. A 93 022315
|
[25] |
Lu Z X, Yu L, Li K, Liu B C, Lin J G, Jiao R Z and Yang B J 2010 Sci. China-Phys., Mech. Astron. 53 100
|
[26] |
Zhang H, Mao Y, Huang D, Guo Y, Wu X and Zhang L 2018 Chin. Phys. B 27 090307
|
[27] |
Li D W, Huang P, Zhou Y M, Li Y and Zeng G H 2018 IEEE Photon. J. 10.5 1
|
[28] |
Jiang X Q, Huang P, Huang D, Lin D K and Zeng G H 2017 Phys. Rev. A 95 022318
|
[29] |
Bacco D, Canale M, Laurenti N, Vallone G and Villoresi P 2013 Nat. Commun. 4 2363
|
[30] |
Huang D, Lin D K, Wang C, Wei W Q, Fang S H, Peng J Y, Huang P and Zeng G H 2015 Opt. Express 23 017511
|
[31] |
Bai Z L, Wang X Y, Yang S S and Li Y M 2016 Sci. China-Phys. Mech. Astron. 59 614201
|
[32] |
Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309
|
[33] |
Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
|
[34] |
Kiktenko E O, rushechkin A S, Lim TC C W, Kurochkin Y V and Fedorov A K 2017 Phys. Rev. Appl. 8 044017
|
[35] |
Leverrier A and Grangier P 2011 Phys. Rev. A 83 042312
|
[36] |
Jouguet P and Kunz-Jacques S 2012 arXiv: 1204.5882
|
[37] |
Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
|
[38] |
Li J, Lin S, Abdel-Ghaffar K, Ryan W E and Costello D J 2016 IEEE Inform. Theory Appl. Workshop 16777097
|
[39] |
Phromsa-ard T, Sangwongngam P, Sripimanwat K, Kaemarungsri K, Vanichchanunt P and Wuttisittikulkij L 2014 IEEE Electron., Comput., Telecommun. Inform. Technol. 1-5
|
[40] |
Zhang J, Bai B, Mu X, Xu H, Liu Z and Li H 2018 Wirel. Commun. Mob. Com. 14 4397671
|
[41] |
Diao Q, Huang Q and Lin S 2012 IEEE Trans. Inf. Theory 58 4030
|
[42] |
Jouguet P, Elkouss D and Kunz-Jacques S 2014 Phys. Rev. A 90 042329
|
[43] |
Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
|
[44] |
Fossorier M P C, Mihaljevic M and Imai H 1999 IEEE Trans. Inf. Theory 47.5 673
|
[45] |
Gallager R 1962 IEEE Trans. Inf. Theory 8.1 21
|
[46] |
Lodewyck J, Bloch M, Garciá-Patroán R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R and McLaughlin S W 2007 Phys. Rev. A 76 042305
|
[47] |
Jiang X Q, Yang S Y, Huang P and Zeng G H 2018 IEEE Photon. J. 10.4 1-10
|
[48] |
MacKay D J 1999 IEEE Trans. Inf. Theory 45 399
|
[49] |
Document 3GPP R1-1711982 3GPP TSG RAN WG1 Meeting AH NR2, 3GPP, June 2017
|
[50] |
Leverrier A, Alléaume R, Boutros J, Zémor G and Grangier P 2008 Phys. Rev. A 77 042325
|
[51] |
Huang D, Huang P, Wang T, Li H S, Zhou Y M and Zeng G H 2016 Phys. Rev. A 94 032305
|
[52] |
Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R and Grangier P 2009 J. Phys. B 42 114014
|
[53] |
Huang D, Huang P, Lin D K and Zeng G H 2016 Sci. Rep. 6 19201
|
[54] |
Guo Y, Liao Q, Wang Y, Huang D, Huang P and Zeng G H 2017 Phys. Rev. A 95 032304
|
[55] |
Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317
|
[56] |
Johnson S J, Chandrasetty V A and Lance A M 2016 IEEE Australian Communications Theory Workshop pp. 18-23
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|