|
|
Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation |
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳) |
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract The nonlocal symmetries are derived for the Korteweg-de Vries-negative-order Korteweg-de Vries equation from the Painlevé truncation method. The nonlocal symmetries are localized to the classical Lie point symmetries for the enlarged system by introducing new dependent variables. The corresponding similarity reduction equations are obtained with different constant selections. Many explicit solutions for the integrable equation can be presented from the similarity reduction.
|
Received: 05 December 2019
Revised: 21 January 2020
Accepted manuscript online:
|
PACS:
|
02.30.Ik
|
(Integrable systems)
|
|
04.20.Jb
|
(Exact solutions)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11471215). |
Corresponding Authors:
Heng-Chun Hu
E-mail: hhengchun@163.com
|
Cite this article:
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳) Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation 2020 Chin. Phys. B 29 040201
|
[1] |
Korteweg D J and G de Vries 1895 Lond. Edinb. Dubl. Phil. Mag. 240 422
|
[2] |
Bluman G W and Anco S C 2002 Symmetry and Integration Methods for Differential Equations (New York: Springer-Verlag)
|
[3] |
Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
|
[4] |
Ren B, Cheng X P and Lin J 2016 Nonlinear Dyn. 86 1855
|
[5] |
Ren B and Lin J 2016 Z. Naturforsch. A 71 557
|
[6] |
Gao X N, Lou S Y and Tang X Y 2013 J. High Energy Phys. 5 029
|
[7] |
Hu H C, Hu X and Feng B F 2016 Z. Naturforsch. A 71 235
|
[8] |
Liu S J, Tang X Y and Lou S Y 2018 Chin. Phys. B 27 060201
|
[9] |
Liu X Z, Yu J, Ren B and Yang J R 2015 Chin. Phys. B 24 010203
|
[10] |
Cheng X P, Lou S Y and Chen C L and Tang X Y 2014 Phys. Rev. E 89 043202
|
[11] |
Cheng W G, Li B and Chen Y 2015 Commun. Nonlinear Sci. Numer. Simulat. 29 198
|
[12] |
Ren B 2015 Phys. Scr. 90 065206
|
[13] |
Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
|
[14] |
Cheng W G and Li B 2016 Z. Naturforsch. A 71 351
|
[15] |
Liu Y K and Li B 2016 Chin. J. Phys. 54 718
|
[16] |
Han P and Lou S Y 1997 Acta Phys. Sin. 46 1249 (in Chinese)
|
[17] |
Hu X R and Chen Y 2015 Chin. Phys. B 24 030201
|
[18] |
Huang L L and Chen Y 2016 Chin. Phys. B 25 078502
|
[19] |
Ren B 2015 Chin. Phys. B 22 110306
|
[20] |
Wazwaz A M 2017 Proc. Nat. Acad. Sci. India Sect. A 87 291
|
[21] |
Wazwaz A M and Xu G Q 2016 Math. Method Appl. Sci. 39 661
|
[22] |
Wazwaz A M 2019 Appl. Math. Lett. 88 1
|
[23] |
Wazwaz A M 2018 Math. Method Appl. Sci. 41 80
|
[24] |
Verosky J M 1991 J. Math. Phys. 32 1733
|
[25] |
Olver P J 1977 J. Math. Phys. 18 1212
|
[26] |
Cheng W G and Xu T Z 2019 Appl. Math. Lett. 94 21
|
[27] |
Lou S Y 2013 arXiv: 13081140v1[nlin.SI]
|
[28] |
Ren B 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 456
|
[29] |
Ren B and Lin J 2018 J. Korean Phys. Soc. 73 538
|
[30] |
Ren B 2016 AIP Adv. 6 085205
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|