Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 033201    DOI: 10.1088/1674-1056/ab6c49
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Precise measurement of a weak radio frequency electric field using a resonant atomic probe

Liping Hao(郝丽萍)1, Yongmei Xue(薛咏梅)1, Jiabei Fan(樊佳蓓)1, Jingxu Bai(白景旭)1, Yuechun Jiao(焦月春)1,2, Jianming Zhao(赵建明)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We present a precise measurement of a weak radio frequency electric field with a frequency of ≤3 GHz employing a resonant atomic probe that is constituted with a Rydberg cascade three-level atom, including a cesium ground state |6S1/2>, an excited state |6P3/2>, and Rydberg state |nD5/2>. Two radio frequency (RF) electric fields, noted as local and signal fields, couple the nearby Rydberg transition. The two-photon resonant Rydberg electromagnetically induced transparency (Rydberg-EIT) is employed to directly read out the weak signal field having hundreds of kHz difference between the local and signal fields that is encoded in the resonant microwave-dressed Rydberg atoms. The minimum detectable signal fields of ESmin=1.36 ±0.04 mV/m for 2.18 GHz coupling |68D5/2>→|69P3/2> transition and 1.33±0.02 mV/m for 1.32 GHz coupling |80D5/2>→|81P3/2> transition are obtained, respectively. The bandwidth dependence is also investigated by varying the signal field frequency and corresponding -3 dB bandwidth of 3 MHz is attained. This method can be employed to perform a rapid and precise measurement of the weak electric field, which is important for the atom-based microwave metrology.
Keywords:  Rydberg electromagnetically induced transparency (Rydberg-EIT)      atomic probe      weak field measurement  
Received:  26 November 2019      Revised:  09 January 2020      Published:  05 March 2020
PACS:  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61475090, 61675123, 61775124, and 11804202), the State Key Program of National Natural Science of China (Grant Nos. 11434007 and 61835007), and Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70).
Corresponding Authors:  Jianming Zhao     E-mail:  zhaojm@sxu.edu.cn

Cite this article: 

Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明) Precise measurement of a weak radio frequency electric field using a resonant atomic probe 2020 Chin. Phys. B 29 033201

[1] Gallagher T F 1994 Rydberg atom (Cambridge: Cambridge University Press)
[2] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
[3] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[4] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
[5] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[6] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 J. Appl. phys. 121 233106
[7] Sedlacek J A, Schwettmann A, Kübler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[8] Koepsell J, Thiele T, Deiglmayr J, Wallraff A and Merkt F 2017 Phys. Rev. A 95 053860
[9] Simons M T, Haddab A H, Gordon J A and Holloway C L 2019 Appl. Phys. Lett. 114 114101
[10] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104
[11] Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M and Jia S T 2016 Phys. Rev. A 94 023832
[12] Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M and Jia S T 2017 Phys. Rev. Appl. 8 014028
[13] Fan H Q, Kumar S, Daschner R, Kübler H and Shaffer J P 2014 Opt. Lett. 39 3030
[14] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 104 244102
[15] Fan H Q, Kumar S, Sheng J T, Shaffer J P, Holloway C L and Gordon J A 2015 Phys. Rev. Appl. 4 044015
[16] Zhang L J, Liu J S, Jia Y, Zhang H, Song Z F and Jia S T 2018 Chin. Phys. B 27 033201
[17] Hao L P, Xue Y M, Fan J B, Jiao Y C, Zhao J M and Jia S T 2019 Appl. Sci. 9 1720
[18] Cox K C, Meyer D H, Fatemi F K and Kunz P D 2018 Phys. Rev. Lett. 121 110502
[19] Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M and Jia S T 2019 Appl. Phys. Exp. 12 126002
[20] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J and Qu J F 2019 Opt. Exp. 27 8848
[21] Kumar S, Fan H Q, Kübler H, Sheng J T and Shaffer J P 2017 Sci. Rep. 7 42981
[22] Kumar S, Fan H Q, Kübler H, Jahangiri A J and Shaffer J P 2017 Opt. Exp. 25 8625
[23] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Advances 9 045030
[24] Holloway C L, Simons M T, Gordon J A and Novotny D 2019 IEEE Antennas and Wireless Propagation Letters 18 1853
[25] Fan J B, Jiao Y C, Hao L P, Xue Y M, Zhao J M and Jia S T 2018 Acta Phys. Sin. 67 093201 (in Chinese)
[1] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[2] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[3] Probing time delay of strong-field resonant above-threshold ionization
Shengliang Xu(徐胜亮), Qingbin Zhang(张庆斌), Cheng Ran(冉成), Xiang Huang(黄湘), Wei Cao(曹伟), and Peixiang Lu(陆培祥). Chin. Phys. B, 2021, 30(1): 013202.
[4] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[5] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[6] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
[7] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[8] Rydberg quantum controlled-phase gate with one control and multiple target qubits
S L Su(苏石磊). Chin. Phys. B, 2018, 27(11): 110304.
[9] Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement
Linjie Zhang(张临杰), Jiasheng Liu(刘家晟), Yue Jia(贾玥), Hao Zhang(张好), Zhenfei Song(宋振飞), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(3): 033201.
[10] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
[11] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[12] Branching ratio and angular distribution of ejected electrons from Eu 4f76p1/2nd auto-ionizing states
Xiao-Rui Wu(武晓瑞), Li Shen(沈礼), Kai Zhang(张开), Chang-Jian Dai(戴长建), Yu-Na Yang(杨玉娜). Chin. Phys. B, 2016, 25(9): 093203.
[13] Laser frequency locking based on Rydberg electromagnetically induced transparency
Yuechun Jiao(焦月春), Jingkui Li(李敬奎), Limei Wang(王丽梅), Hao Zhang(张好), Linjie Zhang(张临杰), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2016, 25(5): 053201.
[14] Field ionization process of Eu 4f76snp Rydberg states
Zhang Jing, Shen Li, Dai Chang-Jian. Chin. Phys. B, 2015, 24(11): 113201.
[15] The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states
Zhang Kai, Shen Li, Dong Cheng, Dai Chang-Jian. Chin. Phys. B, 2015, 24(10): 103204.
No Suggested Reading articles found!