Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 033102    DOI: 10.1088/1674-1056/ab6c46
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Vibronic spectra of aluminium monochloride relevant to circumstellar molecule

Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  The A1Π→X1Σ+ transition system of aluminium monochloride is determined by using ab initio quantum chemistry. Based on the multi-reference configuration interaction method in conjugate to the Davidson correction (MRCI+Q), the potential energy curves (PECs) of the three electronic states are obtained. Transition dipole moments (TDMs) and the vibrational energy levels are studied by employing the aug-cc-pwCV5Z-DK basis set with 4220-active space. The rovibrational constants are first determined from the analytic potential by solving the rovibrational Schrödinger equation, and then the spectroscopic constants are determined by fitting the vibrational levels, and these values are well consistent with the experimental data. The effect of spin-orbit coupling (SOC) on the spectra and vibrational properties are evaluated. The results show that the SOC effect has almost no influence on the spectroscopic constants of AlCl molecules. For the A1Π→X1Σ+ transition, the highly diagonalized Frank-Condon factor (FCF) is f00 =0.9988. Additionally, Einstein coefficients and radiative lifetimes are studied, where the vibrational bands include ν"=0-19→ν'=0-9. The ro-vibrational intensity is calculated at a temperature of 296 K, which can have certain astrophysical applications. At present, there is no report on the calculation of AlCl ro-vibrational intensity, so we hope that our results will be useful in analyzing the interstellar AlCl based on the absorption from A1Π→X1Σ+.
Keywords:  spectroscopic constants      radiative lifetime      Franck-Condon factor      transition intensity  
Received:  08 November 2019      Revised:  13 January 2020      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  37.10.Mn (Slowing and cooling of molecules)  
  87.80.Cc (Optical trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61705182).
Corresponding Authors:  Yun-Guang Zhang     E-mail:  zygsr2010@163.com

Cite this article: 

Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光) Vibronic spectra of aluminium monochloride relevant to circumstellar molecule 2020 Chin. Phys. B 29 033102

[1] Tsuji T 1973 A&A 23 411
[2] Cernicharo J and Guélin M 2002 J. Chem. Phys. 117 10548
[3] Ziurys L M 2006 Proceeding of the National Academy of Sciences 103 12274
[4] Agúndez M, Fonfría J P, Cernicharo J, Kahane C, Daniel F and Guélin M 2012 A&A 543 A48
[5] Decin L, Richards A M S, Waters L B F M, Danilovich T, Gobrecht D, Khouri T, Homan W, Bakker J M, Van de Sande M, Nuth J A and De Beck E 2017 A&A 608 A55
[6] Asplund M, Grevesse N, Sauval A J and Scott P 2009 Ann. Rev. Astron. Astrophys. 47 481
[7] Bhaduri B N and Fowler A 1934 Proceedings of the Royal Society of London 145 321
[8] Mahanti P C 1934 Z. Phys. 88 550
[9] Wyse F C and Gordy W 1972 J. Chem. Phys. 56 2130
[10] Hedderich H G, Dulick M and Bernath P F 1993 J. Chem. Phys. 99 8363
[11] Hildenbrand D L and Theard L P 1969 J. Chem. Phys. 50 5350
[12] Ram R S, Rai S B, Upadhya K N and Rai D K 1982 Phys. Scr. 26 383
[13] Mahieu E, Dubois I and Bredohl H 1989 J. Mol. Spectrosc. 134 317
[14] Mahieu E, Dubois I and Bredohl H 1989 J. Mol. Spectrosc. 138 264
[15] Saksena M D, Dixit V S and Singh M 1998 J. Mol. Spectrosc. 87 1
[16] Langhoff S R, Bauschlicher Jr C W and Taylor P R 1988 J. Chem. Phys. 88 5715
[17] Brites V, Hammoutène D and Hochlaf M 2008 J. Phys. Chem. A. 112 13419
[18] Yousefi M and Bernath P F 2018 Astrophys. J. Suppl. Ser. 237 8
[19] Wan M, Yuan D, Jin C, Wang F, Yang Y, Yu Y and Shao J 2016 J. Chem. Phys. 145 024309
[20] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2018 MOLPRO, a package of ab initio programs, see http://www.molpro.net
[21] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[22] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[23] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[24] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[25] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[26] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[27] Hess B A 1986 Phys. Rev. A 33 3742
[28] Berning A, Schweizer M, Werner H J, Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[29] Yin Y, Shi D, Sun J and Zhu Z 2018 Astrophys. J. Suppl. Ser. 236 34
[30] Cheng J, Zhang H and Cheng X 2018 Astrophys. J. 859 19
[31] Yin Y, Shi D, Sun J and Zhu Z 2018 Astrophys. J. Suppl. Ser. 235 25
[32] Xing W, Shi D, Sun J and Zhu Z 2018 Astrophys. J. Suppl. Ser. 237 16
[33] Woon D E and Dunning T H Jr 1993 J. Chem. Phys. 98 1358
[34] De Jong W A, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48
[35] Peterson K A and Dunning Jr T H 2002 J. Chem. Phys. 117 10548
[36] Le Roy R J 2015 LEVEL 8.2: A computer program for solving the radial Schrodinger equation for bound and quasibound levels, Chemical Physics Research Report No. CP-668, (University of Waterloo)
[37] Bernath P F 2005 Spectra of Atoms and Molecules, 2nd ed. Oxford: Oxford University Press
[38] Castano F, de Juan J and Martinez E 1983 J. Chem. Educ. 60 91
[39] Yang R, Tang B and Gao T 2016 Chin. Phys. B 25 043101
[40] Herzberg G and Huber K P 1979 Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure, Vol. IV
[41] Rogowski D F and Fontijn A 1987 Chem. Phys. Lett. 137 219
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[3] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[4] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[5] Transition intensity calculation of Yb: YAG
Hong-Bo Zhang(张洪波), Qing-Li Zhang(张庆礼), Xing Wang(王星), Gui-Hua Sun(孙贵花), Xiao-Fei Wang(王小飞), De-Ming Zhang(张德明), Dun-Lu Sun(孙敦陆). Chin. Phys. B, 2018, 27(6): 067801.
[6] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[7] Theoretical study of spin-forbidden cooling transitions of indium hydride using ab initio methods
Yun-Guang Zhang(张云光), Hua Zhang(张华), Ge Dou(窦戈). Chin. Phys. B, 2017, 26(9): 093101.
[8] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[9] Ab initio investigation of sulfur monofluoride and its singly charged cation and anion in their ground electronic state
Song Li(李松), Shan-Jun Chen(陈善俊), Yan Chen(陈艳), Peng Chen(陈朋). Chin. Phys. B, 2016, 25(3): 033101.
[10] Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+: GdTaO4
Qingli Zhang(张庆礼), Guihua Sun(孙贵花), Kaijie Ning(宁凯杰), Chaoshu Shi(施朝淑), Wenpeng Liu(刘文鹏), Dunlu Sun(孙敦陆), Shaotang Yin(殷绍唐). Chin. Phys. B, 2016, 25(11): 117802.
[11] Low-lying electronic states of CuN calculated by MRCI method
Shu-Dong Zhang(张树东), Chao Liu(刘超). Chin. Phys. B, 2016, 25(10): 103103.
[12] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(6): 063101.
[13] Spectroscopic properties and radiative lifetimes of SiTe:A high-level multireference configuration interaction investigation
Li Rui (李瑞), Zhang Xiao-Mei (张晓美), Jin Ming-Xing (金明星), Xu Hai-Feng (徐海峰), Yan Bing (闫冰). Chin. Phys. B, 2014, 23(5): 053101.
[14] Multireference calculations on low-lying states and X3Πu-3Πg absorption spectra of indium dimer
Zhou Ling-Song (周凌松), Yan Bing (闫冰), Jin Ming-Xing (金明星). Chin. Phys. B, 2013, 22(4): 043102.
[15] Multi-reference configuration-interaction calculations on multiply charged ions of carbon monosulfide
Yan Bing (闫冰), Zhang Yu-Juan (张玉娟). Chin. Phys. B, 2013, 22(2): 023103.
No Suggested Reading articles found!