Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037401    DOI: 10.1088/1674-1056/ab69ef
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Time-dependent Ginzburg-Landau equations for multi-gap superconductors

Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华)
School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China
Abstract  We numerically solve the time-dependent Ginzburg-Landau equations for two-gap superconductors using the finite-element technique. The real-time simulation shows that at low magnetic field, the vortices in small-size samples tend to form clusters or other disorder structures. When the sample size is large, stripes appear in the pattern. These results are in good agreement with the previous experimental observations of the intriguing anomalous vortex pattern, providing a reliable theoretical basis for the future applications of multi-gap superconductors.
Keywords:  vortex      multi-gap superconductivity      time dependent      finite element technique  
Received:  18 December 2019      Revised:  07 January 2020      Accepted manuscript online: 
PACS:  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  74.25.F- (Transport properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564003 and 11865005) and the Natural Science Foundation of Guangxi Province of China (Grant No. 2018GXNSFAA281024).
Corresponding Authors:  Qinghua Chen     E-mail:  chenqinghua2002@163.com

Cite this article: 

Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华) Time-dependent Ginzburg-Landau equations for multi-gap superconductors 2020 Chin. Phys. B 29 037401

[1] Tinkham M 1996 Introduction To Superconductivity (2nd Edn.) (New York: McGraw-Hill) Chap. 4
[2] Huebener R P 1990 Magnetic Flux Structures of Superconductors (New York: Springer-Verlag)
[3] Abrikosov A 1957 Sov. Phys. JETP 5 1174
[4] Ginzburg V L and Landau L D 1950 Zh. Eksp. Teor. Fiz. 20 1064
[5] Kramer L 1971 Phys. Rev. B 3 3821
[6] Lin S Z 2014 J. Phys.: Condens. Matter 26 493202
[7] Babaev E, Carlstrøm J, Silaev M and Speight J M 2017 Physica C 533 20
[8] Silaev M and Babaev E 2011 Phys. Rev. B 84 094515
[9] Diaz-Mendez R, Mezzacapo F, Lechner W, Cinti F, Babaev E and Pupillo G 2017 Phys. Rev. Lett. 118 067001
[10] Babaev E 2002 Phys. Rev. Lett. 89 067001
[11] Babaev E and Speight M 2005 Phys. Rev. B 72 180502
[12] Carlstrom J, Babaev E and Speight M 2011 Phys. Rev. B 83 174509
[13] Carlstrom J, Garaud J and Babaev E 2006 Phys. Rev. B 74 134515
[14] Moshchalkov V V, Menghini M, Nishio T, Chen Q H, Silhanek A V, Dao V H, Chibotaru L F, Zhigadlo N D and Karpinski J 2009 Phys. Rev. Lett. 102 117001
[15] Nishio T, Dao V H, Chen Q, Chibotaru L F, Kadowaki K and Moshchalkov V V 2010 Phys. Rev. B 81 020506(R)
[16] Gutierrez J, Raes B, Silhanek A V, Li L J, Zhigadlo N D, Karpinski J, Tempere J and Moshchalkov V V 2012 Phys. Rev. B 85 094511
[17] Hicks C W, Kirtley J R, Lippman T M, Koshnick N C, Huber M E, Maeno Y, Yuhasz W M, Maple M B and Moler K A 2010 Phys. Rev. B 81 214501
[18] Ray S J, Gibbs A S, Bending S J, Curran P J, Babaev E, Baines C, Mackenzie A P and Lee S L 2014 Phys. Rev. B 89 094504
[19] Kawasaki I, Watanabe I, Amitsuka H, Kunimori K, Tanida H and Onuki Y 2013 J. Phys. Soc. Jpn. 82 084713
[20] Fujisawa T, Yamaguchi A, Motoyama G, Kawakatsu D, Sumiyama A, Takeuchi T, Settai R and Anuki Y 2015 Jpn. J. Appl. Phys. 54 048001
[21] Kouchi T, Yashima M, Mukuda H, Ishida S, Eisaki H, Yoshida Y, Kawashima K and Iyo A 2019 J. Phys. Soc. Jpn. 88 113702
[22] Huang Y Y, Wang Z C, Yu Y J, Ni J M, Li Q, Cheng E J, Cao G H and Li S Y 2019 Phys. Rev. B 99 020502(R)
[23] Mayoh D A, Pearce M J, Gõtze K, Hillier A D, Balakrishnan G and Lees M R 2019 J. Phys.: Condens. Matter 31 465601
[24] Zhao Y, Lian C, Zeng S, Dai Z, Meng S and Ni J 2019 Phys. Rev. B 100 094516
[25] Panda K, Bhattacharyya A, Adroja D T, Kase N, Biswas P K, Saha S, Das T, Lees M R and Hillier A D 2019 Phys. Rev. B 99 174513
[26] Xu C Q, Li B, Feng J J, Jiao W H, Li Y K, Liu S W, Zhou Y X, Sankar R, Zhigadlo N D, Wang H B, Han Z D, Qian B, Ye W, Zhou W, Shiroka T, Biswas P K, Xu X and Shi Z X 2019 Phys. Rev. B 100 134503
[27] Geurts R, Milosevic M V and Peeters F M 2010 Phys. Rev. B 81 214514
[28] Lin S Z and Hu X 2011 Phys. Rev. B 84 214504
[29] Gropp W D, Kaper H G, Leaf G K, Levine D M, Palumbo M and Vinokur V M 1996 J. Comput. Phys. 123 254
[30] Kato R, Enomoto Y and Maekawa S 1991 Phys. Rev. B 44 6916 Kato R, Enomoto Y and Maekawa S 1993 Phys. Rev. B 47 8016
[31] Berdiyorov G R, Milosevic M V and Peeters F M 2009 Phys. Rev. B 80 214509
[32] Chao X H, Zhu B Y, Silhanek A V and Moshchalkov V V 2009 Phys. Rev. B 80 054506
[33] Berdiyorov G R, Chao X H, Peeters F M, Wang H B, Moshchalkov V V and Zhu B Y 2012 Phys. Rev. B 86 224504
[34] He A, Xue C and Zhou Y H 2017 Chin. Phys. B 26 047403
[35] Zhitomirsky M E and Dao V H 2004 Phys. Rev. B 69 054508
[36] Gurevich A 2007 Physica C 456 160
[37] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[38] Kramer R B G, Ataklti G W, Moshchalkov V V and Silhanek A V 2010 Phys. Rev. B 81 144508
[39] Karapetrov G, Fedor J, Iavarone M, Rosenmann D and Kwok W K 2005 Phys. Rev. Lett. 95 167002
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[9] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[13] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[14] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[15] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
No Suggested Reading articles found!