Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 028102    DOI: 10.1088/1674-1056/ab6721
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High sensitive pressure sensors based on multiple coating technique

Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞)
School of Electronic Engineering, State Key Laboratory for Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  A multi-coating technique of reduced graphene oxide (RGO) was proposed to increase the sensitivity of paper-based pressure sensors. The maximum sensitivity of 17.6 kPa-1 under the 1.4 kPa was achieved. The electrical sensing mechanism is attributed to the percolation effect. Such paper pressure sensors were applied to monitor the motor vibration, which indicates the potential of mechanical flaw detection by analyzing the waveform difference.
Keywords:  paper sensor      reduced graphene oxide      sensitivity  
Received:  12 November 2019      Revised:  27 November 2019      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400603) and the National Natural Science Foundation of China (Grant No. 61804012).
Corresponding Authors:  Xia Guo     E-mail:  guox@bupt.edu.cn

Cite this article: 

Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞) High sensitive pressure sensors based on multiple coating technique 2020 Chin. Phys. B 29 028102

[1] Trung T Q and Lee N E 2016 Adv. Mater. 28 4338
[2] Cheng Y, Wang R R, Sun J and Gao L 2015 Adv. Mater. 27 7365
[3] Cai G F, Wang J X, Qian K, Chen J W, Li S H and Lee P S 2017 Adv. Sci. 4 1600190
[4] Lee J, Kim S, Lee J, Yang D, Park B C, Ryu S and Park I 2014 Nanoscale 6 11932
[5] Jian M Q, Xia K L, Wang Q, Yin Z, Wang H M, Wang C Y, Xie H H and Zhang Y Y 2017 Adv. Funct. Mater. 27 1606066
[6] Chen Z, Ming T, Mahomed M G, Yao H M, Daniel N, Marek H, Mario H and Kong J 2016 Adv. Funct. Mater. 26 5061
[7] Jian M Q, Wang C Y, Qi Wang, Wang H M, Xia K L, Zhe Y, Zhang M C, Liang X P and Zhang Y Y 2017 Sci. China Mater. 60 1026
[8] Bae G Y, Sang W Pak S W, Kim D, Lee G, Kim D H, Chung Y and Cho K 2016 Adv. Mater. 28 5300
[9] Manjunath M S, Nagarjuna N, Uma G, Umapathy M, Nayak M M and Rajanna K 2018 Microsyst. Technol. 24 2969
[10] Hu R, Zhao J and Zheng J 2017 Mater. Lett. 197 59
[1] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[2] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[3] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[4] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[5] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[6] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[7] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[8] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[9] Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微). Chin. Phys. B, 2019, 28(7): 076105.
[10] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[11] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
[12] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[13] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[14] Free-standing, curled and partially reduced graphene oxide network as sulfur host for high-performance lithium-sulfur batteries
Hui-Liang Chen(陈辉亮), Zhuo-Jian Xiao(肖卓建), Nan Zhang(张楠), Shi-Qi Xiao(肖仕奇), Xiao-Gang Xia(夏晓刚), Wei Xi(席薇), Yan-Chun Wang(王艳春), Wei-Ya Zhou(周维亚), Si-Shen Xie(解思深). Chin. Phys. B, 2018, 27(6): 068101.
[15] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
No Suggested Reading articles found!