Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 028103    DOI: 10.1088/1674-1056/ab6718
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method

Zhaodong Zhang(张兆栋)1, Yuting Cao(曹宇婷)1, Dongke Sun(孙东科)1, Hui Xing(邢辉)2, Jincheng Wang(王锦程)3, Zhonghua Ni(倪中华)1
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
2 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, Shaanxi Key Laboratory for Condensed Matter Structure and Properties, Northwestern Polytechnical University(NPU), Xi'an 710129, China;
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Pattern selection during crystal growth is studied by using the anisotropic lattice Boltzmann-phase field model. In the model, the phase transition, melt flows, and heat transfer are coupled and mathematically described by using the lattice Boltzmann (LB) scheme. The anisotropic streaming-relaxation operation fitting into the LB framework is implemented to model interface advancing with various preferred orientations. Crystal pattern evolutions are then numerically investigated in the conditions of with and without melt flows. It is found that melt flows can significantly influence heat transfer, crystal growth behavior, and phase distributions. The crystal morphological transition from dendrite, seaweed to cauliflower-like patterns occurs with the increase of undercoolings. The interface normal angles and curvature distributions are proposed to quantitatively characterize crystal patterns. The results demonstrate that the distributions are corresponding to crystal morphological features, and they can be therefore used to describe the evolution of crystal patterns in a quantitative way.
Keywords:  lattice Boltzmann      crystal growth      phase field      melt flow      pattern selection  
Received:  09 September 2019      Revised:  31 October 2019      Accepted manuscript online: 
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.30.Fb (Solidification)  
  68.08.De (Liquid-solid interface structure: measurements and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51728601 and 51771118), the Fund of the State Key Laboratory of Solidification Processing in NPU (Grant No. SKLSP201901), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2242019K1G003).
Corresponding Authors:  Dongke Sun, Hui Xing, Zhonghua Ni     E-mail:  dksun@seu.edu.cn;huixing@nwpu.edu.cn;nzh2003@seu.edu.cn

Cite this article: 

Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华) A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method 2020 Chin. Phys. B 29 028103

[1] Gao Y, Lu Y, Kong L, Deng Q, Huang L and Luo Z 2018 Acta Metall. Sin. 54 278
[2] Wang J, Guo C, Zhang Q, Tang S, Li J and Wang Z 2018 Acta Metall. Sin. 54 204
[3] Provatas N, Wang Q, Haataja M and Grant M 2003 Phys. Rev. Lett. 91 155502
[4] Chen Y, Billia B, Li D Z, Nguyen-Thi H, Xiao N M and Bogno A A 2014 Acta Mater. 66 219
[5] Xing H, Dong X, Wu H, Hao G, Wang J, Chen C and Jin K 2016 Sci. Rep. 6 26625
[6] Echebarria B, Folch R, Karma A and Plapp M 2005 Phy. Rev. E 70 061604
[7] Beckermann C, Diepers H J, Steinbach I, Karma A and Tong X 1999 J. Comput. Phys. 154 468
[8] Tong X, Beckermann C, Karma A and Li Q 2001 Phy. Rev. E 63 1
[9] Zhu M F, Lee S Y and Hong C P 2004 Phys. Rev. E 69 061610
[10] Chen S, Chen H, Martinez D and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776
[11] Qian Y H, d'Humiéres D and Lallemand P 1992 Europhys. Lett. 17 479
[12] Miller W 2001 J. Cryst. Growth 230 263
[13] Chakraborty S and Chatterjee D 2007 J. Fluid. Mech. 592 155
[14] Sun D K, Zhu M F, Pan S Y and Raabe D 2009 Acta Mater. 57 1755
[15] Sakane S, Takaki T, RojasR, Ohno M, Shibuta Y, Shimokawabe T and Aoki T 2017 J. Cryst. Growth 474 154
[16] Medvedev D, Fischaleck T and Kassner K 2007 J. Cryst. Growth 303 69
[17] Zhang X, Kang J, Guo Z, Xiong S and Han Q 2018 Comput. Phys. Commun. 223 18
[18] Rojas R, Takaki T and Ohno M 2015 J. Comput. Phys. 298 29
[19] Takaki T, Sato R, Rojas R, Ohno M and Shibuta Y 2018 Comput. Mater. Sci. 147 124
[20] Cartalade A, Younsi A and Plapp M 2016 Comput. Math. Appl. 71 1784
[21] Younsi A and Cartalade A 2016 J. Comput. Phys. 325 1
[22] Sun D K, Xing H, Dong X and Han Q 2019 Int. J. Heat Mass Transfer 133 1240
[23] Xing H, Ji M, Dong X, Wang Y, Zhang L and Li S 2020 Mater. Des. 185 108250
[24] Sun D K, Zhu M F, Pan S Y, Yang C R and Raabe D 2011 Comput. Math. Appl. 61 3585
[25] d'Humiéres D 2002 Phil. Trans. R. Soc. Lond. A 360 437
[26] Guo Z and Zheng C 2002 Int. J. Comput. Fluid D 22 465
[27] Chai Z H and Zhao T S 2012 Phys. Rev. E 86 016705
[28] Maier R S, Bernard R S and Grunau D W 1996 Phys. Fluids 8 1788
[29] Dardis O and McCloskey J 1998 Phys. Rev. E 57 4834
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[3] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[4] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[5] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[6] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[7] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[8] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[9] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[10] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[11] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[12] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[13] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[14] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[15] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
No Suggested Reading articles found!