Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014201    DOI: 10.1088/1674-1056/ab5787
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband visible light absorber based on ultrathin semiconductor nanostructures

Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Abstract  It is desirable to have electromagnetic wave absorbers with ultrathin structural thickness and broader spectral absorption bandwidth with numerous applications in optoelectronics. In this paper, we theoretically propose and numerically demonstrate a novel ultrathin nanostructure absorber composed of semiconductor nanoring array and a uniform gold substrate. The results show that the absorption covers the entire visible light region, achieving an average absorption rate more than 90% in a wavelength range from 300 nm to 740 nm and a nearly perfect absorption from 450 nm to 500 nm, and the polarization insensitivity performance is particularly great. The absorption performance is mainly caused by the electrical resonance and magnetic resonance of semiconductor nanoring array as well as the field coupling effects. Our designed broadband visible light absorber has wide application prospects in the fields of thermal photovoltaics and photodetectors.
Keywords:  ultrathin nanostructures      electrical resonance      magnetic resonance      polarization insensitivity  
Received:  01 August 2019      Revised:  05 September 2019      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2018A030313854 and 2016A030313851).
Corresponding Authors:  Hai-Ying Liu     E-mail:  hyliu@scnu.edu.cn

Cite this article: 

Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英) Broadband visible light absorber based on ultrathin semiconductor nanostructures 2020 Chin. Phys. B 29 014201

[1] Smith D R, Pendry J B and Wiltshire M C K 2004 Science 305 788
[2] Cai W S and Shalaev V 2011 Phys. Rev. B 83 115124
[3] Dong J W, Zheng H H, Lai Y, Wang H Z and Chan C T 2011 Phys. Rev. B 83 115124
[4] Andrea A and Engheta N 2008 J. Opt. A: Pure Appl. Opt. 10 093002
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Lin W W, Li Z C, Cheng H, Tang C C, Li J J, Zhang S, Chen S Q and Tian J G 2018 Adv. Mater. 30 1706368
[7] Khorasaninejad M, Chen W T, Robert C D, Jaewon O, Alexander Y Z, Federico C 2016 Science 352 1190
[8] Liu W W, Li Z C, Li Z, Cheng H, Tang C C, Li J J, Chen S Q and Tian J G 2019 Adv. Mater. 31 1901729
[9] Ra'di Y, Simovski C R and Tretyakov S A 2015 Phys. Rev. Appl. 3 037001
[10] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[11] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517
[12] Yan M, Dai J and Qiu M 2014 J. Opt. 16 025002
[13] Yudistira H T, Liu S, Cui T J and Zhang H 2018 Beilstein J. Nanotechnol. 9 1437
[14] Zhou W C, Li K W, Song C, Hao P, Chi M B, Yu M X and Wu Y H 2015 Opt. Express 23 413
[15] Wang B X, Huang W Q and Wang L L 2017 RSC Adv. 7 42956
[16] Behera S and Joseph J 2017 J. Appl. Phys. 122 193104
[17] Shi J X, Zhang W C, Xu W, Zhu Q, Jiang X, Li D D, Yan C C and Zhang D H 2015 Chin. Phys. Lett. 32 94204
[18] Li J, Verellen N and Dorpe P V 2017 ACS Photon. 4 1893
[19] Liu S D, Wang Z X, Wang W J, Chen J D and Chen Z H 2017 Opt. Express 25 22375
[20] Kruk S and Kivshar Y 2017 ACS Photon. 4 2638
[21] Zhou X, Lai M Q, Zhang D, Deng F, Xiang J, Luo L, Lai D N, Wen W K, Fan H F, Dai Q F and Liu H Y 2018 Opt. Commun. 428 47
[22] Lv J W, Mu H W, Liu Q, Zhang X M, Li X L, Liu C, Jiang S S, Sun T and Chu P K 2018 Appl. Opt. 57 4771
[23] Gómez-Medina R, GarcíaC ámara B, Suárez-Lacalle I, González F, Moreno F, Nieto-Vesperinas M and Sáenz J J 2011 J. Nanophoton. 5 053512
[24] Bezares F J, Long J P, Glembocki O J, Guo J P, Rendell R W, Kasica R, Shirey L, Owrutsky J C and Caldwell J D 2013 Opt. Express 21 27587
[25] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[26] Liu Z Q, Fu G L, Huang Z P, Chen J, Pan P P, Yang Y X and Liu Z M 2017 Mater. Lett. 194 13
[27] Kang D, Lee S M, Li Z W, Seyedi A, O'Brien J, Xiao J L and Yoon J 2014 Adv. Opt. Mater. 2 373
[28] Hagglund C, Zeltzer G, Ruiz R, Wangperawong A, Roelofs K E and Bent S F 2016 ACS Photon. 3 456
[29] Goldflam M D, Kadlec E A, Olson B V, Klem J F, Hawkins S D, Parameswaran S, Coon W T, Keeler G A, Fortune T E, Tauke-Pedretti A, Wendt J R, Shaner E A, Davids P S, Kim J K and Peters D W 2016 Appl. Phys. Lett. 109 251103
[30] Argyropoulos C, Le K Q, Mattiucci N, D'Aguanno G and Alú A 2013 Phys. Rev. B 87 205112
[31] Gong Y K, Wang Z B, Li K, Uggalla L, Huang J G, Copner N, Zhou Y, Qiao D and Zhu J Y 2017 Opt. Lett. 42 4537
[32] Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 127802
[33] Liu X S, Chen J, Liu J S, Huang Z P, Yu M D, Pan P P and Liu Z Q 2017 Appl. Phys. Express 10 111201
[34] Zhu W R, Xiao F J, Rukhlenko I D, Geng J P, Liang X L, Premaratne M and Jin R 2017 Opt. Express 25 5781
[35] Ni H B, Wang M, Shen T Y and Zhou J 2015 ACS Nano 9 1913
[36] Taflove A and Hagness S C 2016 Finite-Difference Time-Domain Solution of Maxwell's Equations (New York: John Wiley & Sons, Inc) p. 9
[37] Palik E D 1985 Handbook of Optical Constants of Solids (Boston: Academic Press) p. 189
[38] Liu W W, Li Z C, Cheng H, Chen S Q and Tian J G 2017 Phys. Rev. Appl. 8 014012
[1] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[2] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[3] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[4] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[5] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[6] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[7] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[8] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[9] Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微). Chin. Phys. B, 2019, 28(7): 076105.
[10] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[11] Reconstruction of vector static magnetic field by different axial NV centers using continuous wave optically detected magnetic resonance in diamond
Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Kun Ma(马堃), Zhi-Yong Huang(黄志永), Hai-Jiang Lv(吕海江), Feng-Jian Jiang(蒋峰建). Chin. Phys. B, 2019, 28(4): 047601.
[12] Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications
L Haritha, K Chandra Sekhar, R Nagaraju, G Ramadevudu, Vasanth G Sathe, Md. Shareefuddin. Chin. Phys. B, 2019, 28(3): 038101.
[13] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[14] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[15] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
No Suggested Reading articles found!