Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118701    DOI: 10.1088/1674-1056/ab44af
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application

Dou-Dou Wang(王豆豆)1, Chang-Long Mu(穆长龙)1, De-Peng Kong(孔德鹏)2, Chen-Yu Guo(郭晨瑜)1
1 College of Sciences, Xi'an University of Science and Technology, Xi'an 710054, China;
2 The State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  A type of photonic crystal fiber based on Kagome lattice cladding and slot air holes in a rectangular core is investigated. Full vector finite element method is used to evaluate the modal and propagation properties of the designed fiber. High birefringence of 0.089 and low effective material loss of 0.055 cm-1 are obtained at 1 THz. The y-polarized fundamental mode of the designed fiber shows a flattened and near-zero dispersion of 0±0.45 ps·THz-1·cm-1 within a broad frequency range (0.5 THz-1.5 THz). Our results provide the theory basis for applications of the designed fiber in terahertz polarization maintaining systems.
Keywords:  terahertz      photonic crystal fiber      birefringence      loss      dispersion  
Received:  26 June 2019      Revised:  14 August 2019      Published:  05 November 2019
PACS:  87.50.U-  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604260) and the Outstanding Youth Science Fund of Xi'an University of Science and Technology, China (Grant No. 2019YQ3-10).
Corresponding Authors:  Dou-Dou Wang     E-mail:  wangdoudou@xust.edu.cn

Cite this article: 

Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜) High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application 2019 Chin. Phys. B 28 118701

[33] Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J, Luo Y and Peng G 2015 Opt. Lett. 40 3966
[1] Yu Y Y, Li X Y, He K P and Sun B 2016 Chin. Phys. B 25 028703
[34] Kong D P and Wang L L 2009 Opt. Lett. 34 2435
[2] Wang Y, Ren Y, Chen L, Song C, Li C, Zhang C, Xu D and Yao J 2018 Chin. Phys. B 27 114204
[35] Chen Q, Kong D P, Miao J, He X Y, Zhang J and Wang L L 2017 Acta Phot. Sin. 46 0406001(in Chinese)
[3] Withayachumnankul W, Fischer B M, Lin H and Abbott D 2008 J. Opt. Soc. Am. B 25 1059
[4] Strachan C J, Taday P F, Newnham D A, Gordon K C, Zeitler J A, Pepper M and Rades T 2005 J. Pharm. Sci. 94 837
[5] Wang M, Wang J F, Wu Q Y and Huang Y X 2014 Acta Phys. Sin. 63 154101 (in Chinese)
[6] Wang K and Mittleman D M 2004 Nature 432 376
[7] Bowden B, Harrington J A and Mitrofanov O 2007 Opt. Lett. 32 2945
[8] Skorobogatiy M and Dupuis A 2007 Appl. Phys. Lett. 90 113514
[9] Mendis R and Grischkowsky D 2000 J. Appl. Phys. 88 4449
[10] Wang J L, Yao J Q, Chen H M, Bing P B, Li Z Y and Zhong K 2011 Acta Phys. Sin. 60 104219 (in Chinese)
[11] Cho M, Kim J, Park H, Han Y, Moon K, Jung E and Han H 2008 Opt. Express 16 7
[12] Atakaramians S, Shahraam A V, Fischer B M, Abbott D and Monro T M 2009 Opt. Commun. 282 36
[13] Chen N, Liang J and Ren L 2013 Appl. Opt. 52 5297
[14] Hasan M R, Anower M S, Islam M A and Razzak S M A 2016 Appl. Opt. 55 4145
[15] Wu Z, Shi Z, Xia H, Zhou X, Deng Q, Huang J, Jiang X and Wu W 2016 IEEE Photon. J. 8 4502711
[16] Habib M A, Anower M S and Hasan M R 2018 Opt. Commun. 423 140
[17] Islam M S, Sultana J, Dinovitser A, Ng W H and Abbott D 2018 Opt. Commun. 413 242
[18] Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O and Jepsen P U 2009 Opt. Express 17 8592
[19] Khanarian G 2001 Opt. Eng. 40 1024
[20] Ung B, Mazhorova A, Dupuis A, Rozé M and Skorobogatiy M 2011 Opt. Express 19 B848
[21] Liang J, Ren L, Chen N and Zhou C 2013 Opt. Commun. 295 257
[22] Argyros A and Pla J 2007 Opt. Express 15 7713
[23] Couny F, Benabid F and Light P S 2006 Opt. Lett. 31 3574
[24] Wang Y Y, Wheeler N V, Couny F, Roberts P J and Benabid F 2011 Opt. Lett. 36 669
[25] Anthony J, Leonhardt R, Leonsaval S and Argyros A 2011 Opt. Express 19 18470
[26] Luo J, Chen S, Qu H, Su Z, Li L and Tian F 2018 J. Lightwave Technol. 36 3242
[27] Kawsar A, Sawrab C, Kumar P B, Md S I, Shuvo S, Md I I and Sayed A 2017 Appl. Opt. 56 3477
[28] Large M C J, Ponrathnam S, Argyros A, Bassett I M, Punjari N S, Cox F, Lwin R, Barton G W and Van E M A 2006 Mol. Cryst. Liq. Cryst. 446 219
[29] Van P L D, Gorecki J, Numkam F E, Apostolopoulos V and Poletti F 2018 Appl. Opt. 57 3953
[30] Li J, Nallappan K, Guerboukha H and Skorobogatiy M 2017 Opt. Express 25 4126
[31] Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L and Liu W 2016 Opt. Express 24 22454
[32] Atakaramians S, Afshar V S, Ebendorff-Heidepriem H, Nagel M, Fischer B M, Abbott D and Monro T M 2009 Opt. Express 17 14053
[33] Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J, Luo Y and Peng G 2015 Opt. Lett. 40 3966
[34] Kong D P and Wang L L 2009 Opt. Lett. 34 2435
[35] Chen Q, Kong D P, Miao J, He X Y, Zhang J and Wang L L 2017 Acta Phot. Sin. 46 0406001(in Chinese)
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[3] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[4] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[5] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[6] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[7] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[8] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[9] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[10] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[11] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[12] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[13] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[14] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[15] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
No Suggested Reading articles found!