Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 070302    DOI: 10.1088/1674-1056/28/7/070302
GENERAL Prev   Next  

SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap

Hao Li(李昊)1, Fanglin Chen(陈方林)2
1 School of Mechanical and Electrical Engineering and Information Engineering, University of Mining and Technology, Beijing 100083, China;
2 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
Abstract  

We consider a SU(3) spin-orbit coupled Bose-Einstein condensate confined in a harmonic plus quartic trap. The ground-state wave functions of such a system are obtained by minimizing the Gross-Pitaevskii energy functional, and the effects of the spin-dependent interaction and spin-orbit coupling are investigated in detail. For the case of ferromagnetic spin interaction, the SU(3) spin-orbit coupling induces a threefold-degenerate plane wave ground state with nontrivial spin texture. For the case of antiferromagnetic spin interaction, the system shows phase separation for weak SU(3) spin-orbit coupling, where three discrete minima with unequal weights in momentum space are selected, while hexagonal honeycomb lattice structure for strong SU(3) SOC, where three discrete minima with equal weights are selected.

Keywords:  Bose-Einstein condensate      SU(3) spin-orbit coupling      Gross-Pitaevskii equation  
Received:  13 June 2019      Published:  05 July 2019
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.45.Yv (Solitons)  
  05.30.Jp (Boson systems)  
  05.30.Rt (Quantum phase transitions)  
Corresponding Authors:  Fanglin Chen     E-mail:  fanglin-4444@163.com

Cite this article: 

Hao Li(李昊), Fanglin Chen(陈方林) SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap 2019 Chin. Phys. B 28 070302

[33] Chen G P, Chen S L, Xie Z W, Zhang X F and Zhang S G 2016 Commun. Theor. Phys. 66 53
[1] Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[34] Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[35] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[2] Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (Singapore: World Scientific Press)
[36] Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
[3] Lin Y J, Compton R L, Jiménez-García K, Porto J V, and Spielman I B 2009 Nature 462 628
[37] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[4] Fu Z, Huang L, Meng Z, Wang P, Zhang L, Zhang S, Zhai H, Zhang P and Zhang J 2014 Nat. Phys. 10 110
[38] Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403
[5] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[39] Zhang Y, Zhou Z, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
[6] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[40] Sakaguchi H and Malomed B A 2014 Phys. Rev. E 90 062922
[7] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[41] Sakaguchi H and Malomed B A 2016 New J. Phys. 18 025020
[8] Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
[42] Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401
[9] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[43] Gra? T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
[10] Anderson B M, Juzeliūnas G, Galitski V M and Spielman I B 2012 Phys. Rev. Lett. 108 235301
[44] Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
[11] Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[45] Bornheimer U, Miniatura C and Grémaud B 2018 Phys. Rev. A 98 043614
[12] Meng Z M, Huang L H, Peng P, Li D H, Chen L C, Xu Y, Zhang C, Wang P and Zhang J 2016 Phys. Rev. Lett. 117 235304
[46] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
[13] Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W 2014 Nat. Phys. 10 314
[47] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[14] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[48] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[15] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
[49] Arfken G B, Weber H J and Harris F E 2000 Mathematical Methods for Physicists (Elsevier: Academic Press)
[16] Li J and Liu W M 2018 Acta Phys. Sin. 67 110302 (in Chinese)
[50] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77 (Cambridge: Cambridge University Press)
[17] Yu Z Q and He L 2017 Acta Phys. Sin. 66 220301 (in Chinese)
[51] Bao W Z, Jaksch D and Markowich P 2003 J. Comput. Phys. 187 318
[18] Zhang H, Chen F, Yu C, Sun L and Xu D 2017 Chin. Phys. B 26 080304
[52] Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
[19] Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A and Ji A C 2016 Phys. Rev. A 94 061602
[53] Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
[20] Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q and Ji A C 2018 Anns. Phys. 390 181
[21] Dalibard J, Gerbier F, Juzeliūnas F and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[22] Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[23] Zhai H 2015 Rep. Prog. Phys. 78 026001
[24] Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
[25] Zhang X F, Dong D F, Liu T, Liu W M and Zhang S G 2012 Phys. Rev. A 86 063628
[26] Zhang X F, Kato M, Han W, Zhang S G and Saito H 2017 Phys. Rev. A 95 033620
[27] Sinha S and Shlyapnikov G V 2005 Phys. Rev. Lett. 94 150401
[28] Sánchez-Lotero P and Palacios J J 2005 Phys. Rev. A 72 043613
[29] Matveenko S I, Kovrizhin D, Ouvry S and Shlyapnikov G V 2009 Phys. Rev. A 80 063621
[30] Huang C C, Liu C H and Wu W C 2010 Phys. Rev. A 81 043605
[31] Hsueh C H, Horng T L, Gou S C and Wu W C 2011 Phys. Rev. A 84 023610
[32] Chen G P, Zhang Z Y, Dong B, Wang L X, Zhang X F and Zhang S G 2015 Phys. Lett. A 379 2193
[33] Chen G P, Chen S L, Xie Z W, Zhang X F and Zhang S G 2016 Commun. Theor. Phys. 66 53
[34] Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[35] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[36] Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
[37] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[38] Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403
[39] Zhang Y, Zhou Z, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
[40] Sakaguchi H and Malomed B A 2014 Phys. Rev. E 90 062922
[41] Sakaguchi H and Malomed B A 2016 New J. Phys. 18 025020
[42] Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401
[43] Gra? T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
[44] Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
[45] Bornheimer U, Miniatura C and Grémaud B 2018 Phys. Rev. A 98 043614
[46] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
[47] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[48] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[49] Arfken G B, Weber H J and Harris F E 2000 Mathematical Methods for Physicists (Elsevier: Academic Press)
[50] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77 (Cambridge: Cambridge University Press)
[51] Bao W Z, Jaksch D and Markowich P 2003 J. Comput. Phys. 187 318
[52] Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
[53] Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
[1] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[2] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[3] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[4] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[5] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[6] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[7] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[8] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[9] Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes
Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨). Chin. Phys. B, 2019, 28(9): 093701.
[10] Domain walls and their interactions in a two-component Bose-Einstein condensate
Ling-Zheng Meng(孟令正), Yan-Hong Qin(秦艳红), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2019, 28(6): 060502.
[11] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[12] Accelerate Bose-Einstein condensate by interaction
Jie-Li Qin(秦杰利). Chin. Phys. B, 2019, 28(12): 126701.
[13] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[14] Manipulating transition of a two-component Bose-Einstein condensate with a weak δ-shaped laser
Bo Li(李博), Xiao-Jun Jiang(蒋小军), Xiao-Lin Li(李晓林), Wen-Hua Hai(海文华), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2019, 28(10): 100303.
[15] Expansion dynamics of a spherical Bose-Einstein condensate
Rui-Zong Li(李睿宗), Tian-You Gao(高天佑), Dong-Fang Zhang(张东方), Shi-Guo Peng(彭世国), Ling-Ran Kong(孔令冉), Xing Shen(沈星), Kai-Jun Jiang(江开军). Chin. Phys. B, 2019, 28(10): 106701.
No Suggested Reading articles found!