Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 050502    DOI: 10.1088/1674-1056/28/5/050502
GENERAL Prev   Next  

Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach

Xu-Min Chen(陈许敏)1, Chen Wang(王晨)2
1 Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  

We investigate full counting statistics of quantum heat transfer in a collective-qubit system constructed by multi-qubits interacting with two thermal baths. The nonequilibrium polaron-transformed Redfield approach embedded with an auxiliary counting field is applied to obtain the steady state heat current and fluctuations, which enables us to study the impact of the qubit-bath interaction in a wide regime. The heat current, current noise, and skewness are all found to clearly unify the limiting results in the weak and strong couplings. Moreover, the superradiant heat transfer is clarified as a system-size-dependent effect, and large number of qubits dramatically suppress the nonequilibrium superradiant signature.

Keywords:  quantum transport      heat conduction      phonons or vibrational states in low-dimensional structures and nanoscale materials      nonequilibrium and irreversible thermodynamics     
Received:  27 December 2018      Published:  05 May 2019
PACS:  05.60.Gg (Quantum transport)  
  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11874011 and 11704093).

Corresponding Authors:  Chen Wang     E-mail:  wangchenyifang@gmail.com

Cite this article: 

Xu-Min Chen(陈许敏), Chen Wang(王晨) Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach 2019 Chin. Phys. B 28 050502

[1] Haug H and Jauho A P 2008 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin Heidelberg: Springer-Verlag)
[2] Kosloff R 2013 Entropy 15 2100
[3] Nitzan A 2014 Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems (Oxford: Oxford University Press)
[4] Mohseni M, Omar Y, Engel G S and Plenio M B 2014 Quantum Effects in Biology (Cambridge: Cambridge University Press)
[5] Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381
[6] Li N B, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[7] Ren J and Li B 2015 AIP Advances 5 053101
[8] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[9] Li B, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
[10] Wang L and Li B 2007 Phys. Rev. Lett. 99 177208
[11] Wang L and Li B 2008 Phys. Rev. Lett. 101 267203
[12] Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
[13] Wang C, Chen X M, Sun K W and Ren J 2018 Phys. Rev. A 97 052112
[14] Segal D 2008 Phys. Rev. Lett. 101 260601
[15] Sothmann B and Büttiker M 2012 Europhys. Lett. 99 27001
[16] Ren J and Zhu J X 2013 Phys. Rev. B 88 094427
[17] Craven G T and Nitzan A 2016 Proc. Natl. Acad. Sci. USA 113 9421
[18] Craven G T and Nitzan A 2017 Phys. Rev. Lett. 118 207201
[19] Segal D and Nitzan A 2005 Phys. Rev. Lett. 94 034301
[20] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[21] Ao P and Rammer J 1989 Phys. Rev. Lett. 62 3004
[22] Weiss U 2008 Quantum Dissipative Systems (Singapore: World Scientific)
[23] Segal D 2006 Phys. Rev. B 73 205415
[24] Galperin M, Nitzan A and Ratner M A 2007 Phys. Rev. B 75 155312
[25] Velizhanin K A, Wang H B and Thoss M 2008 Chem. Phys. Lett. 460 325
[26] Saito K and Kato T 2013 Phys. Rev. Lett. 111 214301
[27] Yao Y 2015 Phys. Rev. B 91 045421
[28] Taylor E and Segal D 2015 Phys. Rev. Lett. 114 220401
[29] Kato A and Tanimura Y 2015 J. Chem. Phys. 143 064107
[30] Kato A and Tanimura Y 2016 J. Chem. Phys. 145 224105
[31] Xu D Z and Cao J S 2016 Front. Phys. 11 110308
[32] Wang C, Ren J and Cao J S 2017 Phys. Rev. A 95 023610
[33] Liu J J, Xu H, Li B and Wu C Q 2017 Phys. Rev. E 96 012135
[34] Ferialdi L 2017 Phys. Rev. A 95 020101
[35] Ren J, Hänggi P and Li B 2010 Phys. Rev. Lett. 104 170601
[36] Nicolin L and Segal D 2011 J. Chem. Phys. 135 164106
[37] Nicolin L and Segal D 2011 Phys. Rev. B 84 161414
[38] Chen T, Wang X B and Ren J 2013 Phys. Rev. B 87 144303
[39] Segal D 2014 Phys. Rev. E 90 012148
[40] Wang C, Ren J and Cao J S 2015 Sci. Rep. 5 11787
[41] Xu D Z, Wang C, Zhao Y and Cao J S 2016 New J. Phys. 18 023003
[42] Vogl M, Schaller G and Brandes T 2011 Annals of Physics 326 2827
[43] Vogl M, Schaller G, Schöll E and Brandes T 2012 Phys. Rev. A 86 033820
[44] Wang C and Sun K W 2015 Annals of Physics 362 703
[45] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
[46] Campisi M, Hänggi P and Talkner P 2011 Rev. Mod. Phys. 83 771
[47] Nazir A 2009 Phys. Rev. Lett. 103 146404
[48] Jang Seogjoo, Berkelbach T C and Reichman D R 2013 New J. Phys. 15 105020
[49] Lee C K, Moix J and Cao J S 2015 J. Chem. Phys. 142 164103
[50] McCutcheon D P S and Nazir A 2013 Phys. Rev. Lett. 110 217401
[51] Jang S 2011 J. Chem. Phys. 135 034105
[52] McCutcheon D P S and Nazir A 2011 Phys. Rev. B 83 165101
[53] Silbey R and Harris R 1984 J. Chem. Phys. 80 2615
[54] Harris R and Silbey R 1985 J. Chem. Phys. 83 1069
[55] Friedman H M, Agarwalla B K and Segal D 2018 New J. Phys. 20 083026
[56] Lambert N, Emary C and Brandes T 2004 Phys. Rev. Lett. 92 073602
[57] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
[58] Hardal A Ü C and Müstecaplioğlu Ö E 2015 Sci. Rep. 5 12953
[1] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[2] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[3] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[4] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[5] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[6] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[7] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
[8] Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
Kezhao Xiong(熊科诏), Zonghua Liu(刘宗华). Chin. Phys. B, 2017, 26(9): 098904.
[9] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
[10] Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations
Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏). Chin. Phys. B, 2017, 26(12): 127303.
[11] Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(6): 068103.
[12] Improved kernel gradient free-smoothed particle hydrodynamics and its applications to heat transfer problems
Juan-Mian Lei(雷娟棉) and Xue-Ying Peng(彭雪莹). Chin. Phys. B, 2016, 25(2): 020202.
[13] Electron localization in ultrathin films of three-dimensional topological insulators
Jian Liao(廖剑), Gang Shi(史刚), Nan Liu(刘楠), Yongqing Li(李永庆). Chin. Phys. B, 2016, 25(11): 117201.
[14] Oscillatory Shannon entropy in the process of equilibration of nonequilibrium crystalline systems
A. Giri, Nilangshu K. Das, P. Barat. Chin. Phys. B, 2015, 24(8): 088902.
[15] Numerical solution of the imprecisely defined inverse heat conduction problem
Smita Tapaswini, S. Chakraverty, Diptiranjan Behera. Chin. Phys. B, 2015, 24(5): 050203.
No Suggested Reading articles found!