Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016102    DOI: 10.1088/1674-1056/28/1/016102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of substrate type on Ni self-assembly process

Xuzhao Chai(柴旭朝)1, Boyang Qu(瞿博阳)1, Yuechao Jiao(焦岳超)1, Ping Liu(刘萍)1, Yanxia Ma(马彦霞)1, Fengge Wang(王凤歌)1, Xiaoquan Li(李晓荃)1, Xiangqian Fang(方向前)1, Ping Han(韩平)2, Rong Zhang(张荣)2
1 School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China;
2 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  

Ni self-assembly has been performed on GaN (0001), Si (111) and sapphire (0001) substrates. Scanning electron microscopy (SEM) images verify that the Si (111) substrate leads to failure of the Ni assembly due to Si-N interlayer formation; the GaN (0001) and sapphire (0001) substrates promote assembly of the Ni particles. This indicates that the GaN/sapphire (0001) substrates are fit for Ni self-assembly. For the Ni assembly process on GaN/sapphire (0001) substrates, three differences are observed from the x-ray diffraction (XRD) patterns:(i) Ni self-assembly on the sapphire (0001) needs a 900℃ annealing temperature, lower than that on the GaN (0001) at 1000℃, and loses the Ni network structure stage; (ii) the Ni particle shape is spherical for the sapphire (0001) substrate, and truncated-cone for the GaN (0001) substrate; and (iii) a Ni-N interlayer forms between the Ni particles and the GaN (0001) substrate, but an interlayer does not appear for the sapphire (0001) substrate. All these differences are attributed to the interaction between the Ni and the GaN/sapphire (0001) substrates. A model is introduced to explain this mechanism.

Keywords:  self-assembly      thermal annealing      substrates  
Received:  13 June 2018      Revised:  12 September 2018      Published:  05 January 2019
PACS:  61.46.-w (Structure of nanoscale materials)  
  68.08.Bc (Wetting)  
  68.35.Fx (Diffusion; interface formation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61473266 and 61673404), the Program for Science&Technology Innovation Talents in Universities of Henan Province, China (Grant No. 16HASTIT033), the Science and Technique Foundation of Henan Province, China (Grant Nos. 132102210521, 152102210153, 182102210516, and 172102210601), the Key Program in Universities of Henan Province, China (Grant No. 17B520044), and the Science and Technique Project of the China National Textile and Apparel Council (Grant No. 2018104).

Corresponding Authors:  Xuzhao Chai, Boyang Qu     E-mail:  xzchai@zut.edu.cn;6509@zut.edu.cn

Cite this article: 

Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣) Effect of substrate type on Ni self-assembly process 2019 Chin. Phys. B 28 016102

[1] Chiu C H, Lu T C, Huang H W, Lai C F, Kao C C, Chu J T, Yu C C, Kuo H C, Wang S C, Lin C F and Hsueh T H 2007 Nanotechnology 18 445201
[2] Yang G F, Xie F, Tong Y Y, Chen P, Yu Z G, Yan D W, Xue J J, Zhu H X, Guo Y, Li G H and Gao S M 2015 Mat. Sci. Semicon. Proc. 30 694
[3] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[4] Henley S J and Carey J D 2005 Phys. Rev. B 72 195408
[5] Facsko S, Dekorsy T, Koerdt C, Trappe C, Kurz H, Vogt A and Hartnagel H L 1999 Science 285 1551
[6] Oh Y J, Ross C A, Jung Y S, Wang Y and Thompson C V 2009 Small 5 860
[7] Tiberto P, Gupta S, Bianco S, Celegato F, Martino P, Chiolerio A, Tagliaferro A and Allia P 2011 J. Nanopart. Res. 13 245
[8] Aggarwal S, Ogale S B, Ganpule C S, Shinde S R, Novikov V A, Monga A P, Burr M R and Ramesh R 2001 Appl. Phys. Lett. 78 1442
[9] Carey J D, Ong L L and Silva S R P 2003 Nanotechnology 14 1223
[10] Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A G, Ferrari A C, Roy D, Robertson J and Milne W I 2001 J. Appl. Phys. 90 5308
[11] Yu C C, Chu C F, Tsai J Y, Huang H W, Hsueh T H, Lin C F and Wang S C 2002 Jpn. J. Appl. Phys. 41 L910
[12] Kim S I, Lee S R, Ahn K M and Ahn B T 2010 J. Electrochem. Soc. 157 H231
[13] Julies B A, Knoesen D, Pretorius R and Adams D 1999 Thin Solid Films 347 201
[14] Diebold U, Pan J M and Madey T E 1995 Surf. Sci. 331-333 845
[15] Richardson J T, Scates R and Twigg M V 2003 Appl. Catal. A: Gen. 246 137
[16] Detavernier C, Sweet J J and Lavoie C 2008 J. Appl. Phys. 103 113526
[1] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[2] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[3] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[4] Growth and aggregation of Cu nanocrystals on ionic liquid surfaces
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔). Chin. Phys. B, 2020, 29(6): 066801.
[5] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[6] Magnetoelastic coupling effect of Fe10Co90 films grown on different flexible substrates
Jiapeng Zhao(赵佳鹏), Qinhuang Guo(郭勤皇), Huizhong Yin(尹慧中), Jintang Zou(邹锦堂), Zhenjie Zhao(赵振杰), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2020, 29(11): 117501.
[7] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[8] Growth of high quality Sr2IrO4 epitaxial thin films onconductive substrates
Hui Xu(徐珲), Zhangzhang Cui(崔璋璋), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林). Chin. Phys. B, 2019, 28(7): 078102.
[9] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[10] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
[11] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[12] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[13] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[14] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[15] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
No Suggested Reading articles found!