CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Growth and aggregation of Cu nanocrystals on ionic liquid surfaces |
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔) |
Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract We report a catalyst-free growth of Cu nanocrystals on ionic liquid surfaces by thermal evaporation method at room temperature. After deposition of Cu on ionic liquid surfaces, ramified Cu aggregates form. It is found that the aggregates are composed of both granules and nanocrystals with triangular or hexagonal appearances. The sizes of the nanocrystals are in the range of tens to hundreds of nanometers and increase with the nominal deposition thickness. The growth mechanism of the Cu aggregates and nanocrystals is presented.
|
Received: 02 March 2020
Revised: 01 April 2020
Accepted manuscript online:
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374082). |
Corresponding Authors:
Gao-Xiang Ye
E-mail: gxye@zju.edu.cn,gxye@mail.hz.zj.cn
|
Cite this article:
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔) Growth and aggregation of Cu nanocrystals on ionic liquid surfaces 2020 Chin. Phys. B 29 066801
|
[1] |
Frank S, Poncharal P, Wang Z L and Heer W A D 1998 Science 280 1744
|
[2] |
Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
|
[3] |
Gawande M B, Goswami A, Felpin F X, Asefa T, Huang X, Silva R, Zou X, Zboril R and Varma R S 2016 Chem. Rev. 116 3722
|
[4] |
Ye G X, Michely T, Weidenhof V, Friedrich I and Wuttig M 1998 Phys. Rev. Lett. 81 622
|
[5] |
KorallıP, Varol S F, Kompitsas M and Girtan M 2016 Chin. Phys. Lett. 33 056801
|
[6] |
Li A, Wu J L, Xu X S, Liu Y, Bao Y N and Dong B 2018 Chin. Phys. B 27 097301
|
[7] |
Hong B H, Bae S C, Lee C W, Jeong S and Kim K S 2001 Science 294 348
|
[8] |
Germain V, Li J, Ingert D, Wang Z L and Pileni M P 2003 J. Phys. Chem. B 107 8717
|
[9] |
Xiong Y and Xia Y 2007 Adv. Mater. 19 3385
|
[10] |
Voigt M, Dorsfeld S, Volz A and Sokolowski M 2003 Phys. Rev. Lett. 91 026103
|
[11] |
Ye Q L, Yu S J, Jin J S and Ye G X 2003 Chin. Phys. Lett. 20 1109
|
[12] |
Xie J P, Yu W Y, Zhang S L, Chen M G and Ye G X 2007 Phys. Lett. A 371 160
|
[13] |
Nguyen M T and Yonezawa T 2018 Sci. Technol. Adv. Mater. 19 883
|
[14] |
Liu D, Li C, Zhou F, Zhang T, Liu G, Cai W and Li Y 2017 Adv. Mater. Interfaces 4 1600976
|
[15] |
Sun Y and Xia Y 2002 Science 298 2176
|
[16] |
Morales A M and Lieber C M 1998 Science 279 208
|
[17] |
Wang C F, Li Q S, Wang J S, Zhao F Z and Zhang L C 2016 Chin. Phys. Lett. 33 076802
|
[18] |
Prasad B L V, Stoeva S I, Sorensen C M and Klabunde K J 2002 Langmuir: ACS Journal Surfaces Colloids 18 7515
|
[19] |
Kast M, Schroeder P, Hyun Y J and Pongratz P 2007 Nano Lett. 7 2540
|
[20] |
Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
|
[21] |
Murray C B, Kagan C R and Bawendi M G 2000 Annu. Rev. Mater. Sci. 30 545
|
[22] |
Torimoto T, Okazaki K i, Kiyama T, Hirahara K, Tanaka N and Kuwabata S 2006 Appl. Phys. Lett. 89 243117
|
[23] |
Luo M B, Ye G X, Xia A G, Jin J S, Yang B and Xu J M 1999 Phys. Rev. B 59 3218
|
[24] |
Zhang C H, Lv N, Zhang X F, Yang B and Ye G X 2011 J. Phys.: Condens. Matter. 23 435006
|
[25] |
Lv N, Zhang C H, Yang B, Pan Q F and Ye G X 2012 J. Phys. Soc. Jpn. 81 094605
|
[26] |
Liu J and Fu L 2019 Adv. Mater. 31 1800690
|
[27] |
Ye G X, Xia A G, Gao G L, Lao Y F and Tao X M 2001 Phys. Rev. B 63 125405
|
[28] |
Chen M G, Xie J P and Ye G X 2006 Phys. Lett. A 360 323
|
[29] |
Lu C, Cheng Y, Pan Q, Tao X, Yang B and Ye G 2016 Sci. Reports 6 19870
|
[30] |
Lu C, Jin Y, Tao X, Yang B and Ye G 2018 CrystEngComm. 20 122
|
[31] |
Martynec T and Klapp S H L 2018 Phys. Rev. E 98 042801
|
[32] |
Bao Z, Li L, Shen J, Ye X, Tao X, Yang B and Ye G 2019 CrystEngComm. 21 6784
|
[33] |
Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S and Topsoe H 2002 Science 295 2053
|
[34] |
Xiong Y, Washio I, Chen J, Cai H, Li Z Y and Xia Y 2006 Langmuir: ACS Journal Surfaces Colloids 22 8563
|
[35] |
Lopez R, Haynes T E, Boatner L A, Feldman L C and Haglund R F 2002 Phys. Rev. B 65 224113
|
[36] |
Lang N D and Kohn W 1970 Phys. Rev. B 1 4555
|
[37] |
Polatoglou H M, Methfessel M and Scheffler M 1993 Phys. Rev. B 48 1877
|
[38] |
Zisman W A 1964 Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution (American Chemical Society) p. 1
|
[39] |
Jia H, Zeng J, An J, Song W, Xu W and Zhao B 2008 Thin Solid Films 516 5004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|