Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 014201    DOI: 10.1088/1674-1056/28/1/014201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma

Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟)
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  

The propagation characteristics of oblique incidence terahertz (THz) waves through non-uniform plasma are investigated by the shift-operator finite-difference time-domain (SO-FDTD) method combined with the phase matching condition. The electron density distribution of the non-uniform plasma is assumed to be in a Gaussian profile. Validation of the present method is performed by comparing the results with those obtained by an analytical method for a homogeneous plasma slab. Then the effects of parameters of THz wave and plasma layer on the propagation properties are analyzed. It is found that the transmission coefficients greatly depend on the incident angle as well as on the thickness of the plasma, while the polarization of the incident wave has little influence on the propagation process in the range of frequency considered in this paper. The results confirm that the THz wave can pass through the plasma sheath effectively under certain conditions, which makes it a potential candidate to overcome the ionization blackout problem.

Keywords:  terahertz wave      transmission      oblique incidence      plasma sheath      finite-difference time-domain method  
Received:  03 September 2018      Revised:  28 October 2018      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  02.70.Bf (Finite-difference methods)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB340203), the National Natural Science Foundation of China (Grant Nos. 61431010 and 61501350), and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2018JM6016 and 2016JM1001).

Corresponding Authors:  Yiping Han, Jiajie Wang     E-mail:  yphan@xidian.edu.cn;wangjiajie@xidian.edu.cn

Cite this article: 

Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟) Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma 2019 Chin. Phys. B 28 014201

[1] Huber P W, Evans J S and J C J C 1971 AIAA J. 9 1154
[2] Keidar M, Kim M and Boyd I 2008 J. Spacecr. Rockets 45 445
[3] Rybak J P and Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7 879
[4] Morabito D D 2002 The Spacecraft Communications Blackout Problem Encountered During Passage or Entry of Planetary Atmospheres
[5] Zang Q, Bai X, Ma P, Huang J, Ma J, Yu S, Shi H, Sun X, Liu Y and Lu Y 2017 Opt. Lett. 42 687
[6] Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R and Shome P 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit (Hilton Head, South Carolina: American Institute of Aeronautics and Astronautics) pp. 1-10
[7] Gu L, Tan Z Y and Cao J C 2013 Physics 42 695 (in Chinese)
[8] Wu M, Lang T, Shi G and Han Z 2018 Opt. Commun. 410 520
[9] Panyaev I, Dadoenkova Y, Zolotovskii I and Sannikov D 2018 Opt. Commun. 426 395
[10] Xie Z, He J, Wang X, Feng S and Zhang Y 2015 Opt. Lett. 40 359
[11] Rao Z, Wang X and Lu Y 2011 Opt. Commun. 284 5472
[12] Li J, Pi Y and Yang X 2014 Wirel. Commun. Mob. Com. 14 1252
[13] Li S, Li J, Zhu Z and Cui W 2015 Int. Conf. Signal Process. pp. 2398-2402
[14] Yuan C, Zhou Z, Zhang J W and Xiang X 2011 J. Appl. Phys. 109 063305
[15] Yuan C, Zhou Z, Xiang X, Sun H, Wang H, Xing M and Luo Z 2011 Nucl. Instrum. Methods Phys. Res. B 269 23
[16] Yuan C, Zhou Z, Xiang X, Sun H and Pu S 2010 Phys. Plasmas 17 113304
[17] Ling Z, Qing Z, Zhang L S and Jun X X 2012 Acta Phys. Sin. 61 245202 (in Chinese)
[18] Tosun Z, Akbar D and Altan H 2009 Int. Conf. Infrared Millimeter Terahertz Waves, pp. 1-2
[19] Guo L J, Guo L X and Li J T 2017 Phys. Plasmas 24 022108
[20] Chen J, Yuan K, Shen L, Deng X, Hong L and Yao M 2016 Prog. Electromagn. Res. 157 21
[21] Wang M, Li H, Dong Y, Li G, Jiang B, Zhao Q and Xu J 2016 IEEE Trans. Antennas Propag. 64 286
[22] Wang M, Yu M, Xu Z, Li G, Jiang B and Xu J 2015 IEEE Trans. Plasma Sci. 43 4182
[23] Zheng L, Zhao Q, Liu S, Xing X and Chen Y 2014 J. Infrared Millim. Te. 35 187
[24] Tian Y, Ai X, Han Y and Liu X 2014 Phys. Plasmas 21 123303
[25] Gao R, Yuan C, Wang Y, Zhou Z, Gong D, Fang Y and Rong X 2013 J. Appl. Phys. 114 123302
[26] Yuan C X, Zhou Z X, Zhang J W, Xiang X L, Yue F and Sun H G 2011 IEEE Trans. Plasma Sci. 39 1577
[27] Chen W, Li J T and Dan L 2017 Acta Phys. Sin. 66 84102 (in Chinese)
[28] Chen W, Deng X J, Feng J, Huang G Y 2014 Acta Phys. Sin. 63 194101 (in Chinese)
[29] Liu S, Zhou T, He X, Zhou Y and Hong W 2006 Int. Symp. Antennas Propag. EM Theory, pp. 1-4
[30] Liu S, Zhou T, Liu M and Hong W 2008 J. Syst. Eng. Electron. 19 15
[31] Rahmani Z and Moradi H 2018 Optik 155 81
[32] Yuan K, Chen J, Shen L, Deng X, Yao M and Hong L 2018 IEEE Trans. Plasma Sci. 46 373
[33] Cao Y, Li H, Wang Z and Wu Z 2016 Int. J. Antenn. Propag. 2016 1
[34] Tian Y, Yan W, Gu X, Jin X, Li J and Li B 2017 AIP Adv. 7 125325
[35] Ling Z 2013 Study of Electromagnetic Wave Propagation in Spacecraft Plasma Sheath (Ph.D. Thesis) (Chengdu: School of Physical Electronics) (in Chinese)
[36] Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method (New York: IEEE Press)
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[3] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[4] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[5] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[6] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[7] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[8] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[9] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[10] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
[11] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[12] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[13] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[14] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[15] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
No Suggested Reading articles found!