Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 014202    DOI: 10.1088/1674-1056/28/1/014202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of the Casimir force on the properties of a hybrid optomechanical system

Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices(School of Information and Optoelectronic Science and Engineering), Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Abstract  

We investigate the effects of the Casimir force on the output properties of a hybrid optomechanical system. In this system, a nanosphere is fixed on the movable-mirror side of the standard optomechanical system, and the nanosphere interacts with the movable-mirror via the Casimir force, which depends on the mirror-sphere separation. In the presence of the probe and control fields, we analyze the transmission coefficient and the group delay of the field-component with the frequency of the probe field. We also study the transmission intensity of the field-component with the frequency of a newly generated four-wave mixing (FWM) field. By manipulating the Casimir force, we find that a tunable slow light can be realized for the field-component with the frequency of the probe field, and the intensity spectrum of the FWM field can be enhanced and shifted effectively.

Keywords:  quantum optics      optomechanics      quantum information and processing  
Received:  20 August 2018      Revised:  07 October 2018      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574092, 61775062, 61378012, 91121023, and 60978009), the National Basic Research Program of China (Grant No. 2013CB921804), and the Innovation Project of Graduate School of South China Normal University (Grant No. 2017LKXM090).

Corresponding Authors:  Ya-Fei Yu, Zhi-Ming Zhang     E-mail:  yuyafei@m.scnu.edu.cn;zhangzhiming@m.scnu.edu.cn

Cite this article: 

Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明) Effects of the Casimir force on the properties of a hybrid optomechanical system 2019 Chin. Phys. B 28 014202

[1] Braginskii V B and Manukin A B 1967 Sov. Phys. JETP 25 653
[2] Liu Y L, Wang C, Zhang J and Liu Y X 2018 Chin. Phys. B 27 024204
[3] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[4] Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204
[5] Qin L G, Wang Z Y, Wu S C, Gong S Q, Ma H Y and Jing J 2018 Opt. Commun. 410 102
[6] Dong C, Wang H, Kuzyk M and Fiore V 2012 Science 338 1609
[7] Zhang J Q, Li Y, Feng M and Xu Y 2012 Phys. Rev. A 86 053806
[8] Chang D E, Naeini A H S, Hafezi M and Painter O 2011 New J. Phys. 13 023003
[9] Agarwal G S and Huang S M 2012 Phys. Rev. A 85 021801
[10] Shi H Q, Xie Z Q, Xu X W and Liu N H 2018 Acta Phys. Sin. 67 044203 (in Chinese)
[11] Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett. 74 2447
[12] Kien F L and Hakuta K 2009 Phys. Rev. A 79 013818
[13] Mirhosseini M, Viza G I, Magaña-Loaiza O S, Malik M, Howell J C and Boyd R W 2016 Phys. Rev. A 93 053836
[14] Jiang C, Liu H, Cui Y, Li X, Chen G and Chen B 2013 Opt. Express 21 12165
[15] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
[16] Solanki S K, Lagg A, Woch J, Krupp N and Collados M 2003 Nature 425 692
[17] Chen B, Jiang C and Zhu K D 2011 Phys. Rev. A 83 055803
[18] Tarhan D, Huang S M and Müstecaplioğlu Ö E 2013 Phys. Rev. A 87 013824
[19] Chen H J, Chen C Z, Li Y, Fang X W and Tang X D 2017 Opt. Commun. 382 73
[20] Boyd R W and Gauthier D J 2002 Progress in Optics (Wolf E Ed.) (Amsterdam: Elsevier) pp. 497-530
[21] Huang S M and Agarwal G S 2010 Phys. Rev. A 81 033830
[22] Li J, Yu R, Ding C and Wu Y 2014 Opt. Express 22 15024
[23] Li Z, You X, Li Y, Liu Y C and Peng K 2018 Phys. Rev. A 97 033806
[24] Lamoreaux S K 2005 Rep. Prog. Phys. 68 201
[25] Lamoreaux S K 2007 Phys. Today 60 40
[26] Sushkov A O, Kim W J, Dalvit D A R and Lamoreaux S K 2011 Nat. Phys. 7 230
[27] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5
[28] Ruoso G, Bressi G, Carugno G and Onofrio R 2002 Phys. Rev. Lett. 88 041804
[29] Chan H B, Bao Y, Zou J, Cirelli R A, Klemens F, Mansfield W M and Pai C S 2008 Phys. Rev.Lett. 101 030401
[30] Krause D E, Decca R S, Lopez D and Fischbach E 2007 Phys. Rev. Lett. 98 050403
[31] Intravaia F, Koev S, Jung I W, Talin A A, Davids P S, Decca R S, Aksyuk V ADalvit D A and Lopez D 2013 Nat. Commun. 4 2515
[32] Klimchitskaya G L, Mohideen U and Mostepanenko V M 2009 Rev. Mod. Phys. 81 1827
[33] Rodriguez-Lopez P and Grushin A G 2014 Phys. Rev. Lett. 112 056804
[34] Cysne T, Kort-Kamp W J M, Oliver D, Pinheiro F A, Rosa F S S and Farina C 2014 Phys. Rev. A 90 052511
[35] Woods L M, Dalvit D A R, Tkatchenko A, Rodriguez-Lopez P, Rodriguez A W and Podgornik R 2016 Rev. Mod. Phys. 88 045003
[36] Volokitin A I and Persson B N 2011 Phys. Rev. Lett. 106 094502
[37] Rodriguez A W, McCauley A P, Woolf D, Capasso F, Joannopoulos J D and Johnson S G 2010 Phys. Rev. Lett. 104 160402
[38] Chan H B, Aksyuk V A, Kleiman R N, Bishop D J and Capasso F 2001 Phys. Rev. Lett. 87 211801
[39] Shahmoon E, Mazets I and Kurizki G 2014 Proc. Natl. Acad. Sci. USA 111 10485
[40] Zou J, Marcet Z, Rodriguez A W, Reid M T H, McCauley A P, Kravchenko I I, Lu T, Bao Y, Johnson S G and Chan H B 2013 Nat. Commun. 4 1845
[41] Nie W J, Lan Y H, Li Y and Zhu S Y 2012 Phys. Rev. A 86 063809
[42] Liu X, Li Y and Jing H 2016 Sci. Rep. 6 27102
[43] Bimonte G, Emig T, Jaffe R L and Kardar M 2012 EPL 97 50001
[44] Gardiner C W and Zoller P 2000 Quantum Noise: a Handbook of Markovian and non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Berlin: Springer-Verlag) vol. 56
[45] Boyd R W 2008 Nonlinear Optics (3rd edn.) (Amsterdam: Academic Press)
[46] Woodley J F and Mojahedi M 2004 Phys. Rev. E 70 046603
[47] Fano U 1961 Phys. Rev. 124 1866
[48] Cheng Y, Tan Z, Wang J, Zhu Y F and Zhan M S 2016 Chin. Phys. Lett. 33 014202
[49] Garcia-Sanchez D, Fong K Y, Bhaskaran H, Lamoreaux S and Tang H X 2012 Phys. Rev. Lett. 109 027202
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[3] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[4] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[5] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[6] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[7] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[8] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[9] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[10] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[11] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[12] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[13] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[14] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[15] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
No Suggested Reading articles found!