Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097103    DOI: 10.1088/1674-1056/27/9/097103

Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology

Jiahao Zhang(张佳浩)1,2, Shuai Zhang(张帅)1, Ziheng Chen(陈子珩)2, Meng Lv(吕孟)1,2, Hengcan Zhao(赵恒灿)1,2, Yi-feng Yang(杨义峰)1, Genfu Chen(陈根富)1, Peijie Sun(孙培杰)1
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China

Kondo semimetal CeRu4Sn6 is attracting renewed attention due to the theoretically predicted nontrivial topology in its electronic band structure. We report hydrostatic and chemical pressure effects on the transport properties of single-and poly-crystalline samples. The electrical resistivity ρ(T) is gradually enhanced by applying pressure over a wide temperature range from room temperature down to 25 mK. Two thermal activation gaps estimated from high-and low-temperature windows are found to increase with pressure. A flat ρ(T) observed at the lowest temperatures below 300 mK appears to be robust against both pressure and field. This feature as well as the increase of the energy gaps calls for more intensive investigations with respect to electron correlations and band topology.

Keywords:  CeRu4Sn6      Weyl semimetal      heavy fermion      hydrostatic pressure  
Received:  25 May 2018      Revised:  19 June 2018      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  72.15.-v (Electronic conduction in metals and alloys)  

Project supported by the Ministry of Science and Technology of China (Grant Nos. 2015CB921303 and 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 11474332 and 11774404), and the Chinese Academy of Sciences through the Strategic Priority Research Program (Grant No. XDB07020200).

Corresponding Authors:  Peijie Sun     E-mail:

Cite this article: 

Jiahao Zhang(张佳浩), Shuai Zhang(张帅), Ziheng Chen(陈子珩), Meng Lv(吕孟), Hengcan Zhao(赵恒灿), Yi-feng Yang(杨义峰), Genfu Chen(陈根富), Peijie Sun(孙培杰) Pressure effect in the Kondo semimetal CeRu4Sn6 with nontrivial topology 2018 Chin. Phys. B 27 097103

[1] Riseborough P 2000 Adv. Phys. 49 257
[2] Tomczak J M 2018 J. Phys.:Condens. Matter 30 183001
[3] Allen J W, Batlogg B and Wachter P 1979 Phys. Rev. B 20 4807
[4] Cooley J C, Aronson M C and Canfield P C 1997 Phys. Rev. B 55 7533
[5] Takabatake T, Teshima F, Fujii H, Nishigori S, Suzuki T, Fujita T, Yamaguchi Y, Sakurai J and Jaccard D 1990 Phys. Rev. B 41 9607R
[6] Das I and Sampathkumaran V 1992 Phys. Rev. B 46 4250
[7] Wissgott P and Held K 2016 Eur. Phys. J. B 89 5
[8] Guritanu V, Wissgott P, Weig T, Winkler H, Sichelschmidt J, Schefer M, Prokoev A, Kimura S, Iizuka T, Strydom A M, Dressel M, Steglich F, Held K and Paschen S 2013 Phys. Rev. B 87 115129
[9] Xu Y, Yue C, Weng H M and Dai X 2017 Phys. Rev. X 7 011027
[10] Strydom A M, Guo Z, Paschen S, Viennois R and Steglich F 2005 Physica B 359-361 293
[11] Brüning E M, Brando M, Baenitz B, Bentien A, Strydom A M, Walstedt R E, Steglich F 2010 Phys. Rev. B 82 125115
[12] Xia X B, Shen B, Smidman M, Chen Y, Lee H and Yuan H Q 2018 Chin. Phys. Lett. 35 067102
[13] Sundermann M, Strigari F, Willers T, Winkler H, Prokofiev A, Ablett J M, Rueff J P, Schmitz D, Weschke E, Sala M M, Al-Zein A, Tanaka A, Haverkort M W, Kasinathan D, Tjeng L H, Paschen S and Severing A 2015 Sci. Rep. 5 17937
[14] Kim D J, Xia J and Fisk Z 2014 Nat. Mater. 13 466
[15] Chang P Y, Erten O and Coleman P 2017 Nat. Phys. 13 794
[16] Winkler H, Lorenzer K A, Prokoev A and Paschen S 2012 J. Phys.:Confer. Series 391 012077
[17] Hänel J, Winkler H, Ikeda M, Larrea J J, Martelli V, Prokoev A, Bauer E and Paschen S 2014 J. Ele. Mater. 43 2440
[18] Sawamura T, Kagayama T and Oomi G 1997 Physica B 239 106
[19] There was a confusion on the energy gap Eg of polycrystalline CeRu4Sn6 in literatures, because sometimes the activation energy E_a was referred to as Eg.[6] Note that Ea=Eg/2 on the assumption of a particle-hole symmetric band gap. We employ Eg to characterize the band gap energy in our paper.
[20] Shahrokhvand M, Pezzini S, van Delft M R, Zeitler U, Hussey N E and Wiedmann S 2017 Phys. Rev. B 96 205125
[21] Sengupta K, Iyer K K, Ranganathan R and Sampathkumaran E V 2012 J. Phys. Confer. Series 377 012029
[22] Hundley M F, Canfield P C, Thompson J T, Fisk Z and Lawrence J M 1991 Physica B 171 254
[23] Takabatake T, Nagasawa M, Fujii H, Kido G, Nohara M, Nishigori S, Suzuki T, Fujita T, Helfrich R, Ahlheim U, Fraas K, Geibel C and Steglich F 1992 Phys. Rev. B 45 5740
[24] Sugiyama K, Iga F, Kasaya M, Kasuya T and Date M 1988 J. Phys. Soc. Jpn. 57 3946
[1] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[2] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[3] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[4] Crystal structure and electromagnetic responses of tetragonal GdAlGe
Cong Wang(王聪), Yong-Quan Guo(郭永权), Tai Wang(王泰), and Shuo-Wang Yang(杨硕望). Chin. Phys. B, 2020, 29(12): 127502.
[5] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[6] Scanning tunneling microscopic investigation on morphology of magnetic Weyl semimetal YbMnBi2
Zhen Zhu(朱朕), Dong Yan(严冬), Xiao-Ang Nie(聂晓昂), Hao-Ke Xu(徐豪科), Xu Yang(杨旭), Dan-Dan Guan(管丹丹), Shiyong Wang(王世勇), Yao-Yi Li(李耀义), Canhua Liu(刘灿华), Jun-Wei Liu(刘军伟), Hui-Xia Luo(罗惠霞), Hao Zheng(郑浩), Jin-Feng Jia(贾金锋). Chin. Phys. B, 2019, 28(7): 077302.
[7] Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators
Junwei Liu(刘军伟), Chen Fang(方辰), Liang Fu(傅亮). Chin. Phys. B, 2019, 28(4): 047301.
[8] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
[9] Giant enhancement of superconductivity in few layers MoTe2
Yuan Gan(甘远), Chang-Woo Cho, Alei Li(李阿蕾), Jian Lyu(吕坚), Xu Du(杜序), Jin-Sheng Wen(温锦生), Li-Yuan Zhang(张立源). Chin. Phys. B, 2019, 28(11): 117401.
[10] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[11] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[12] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
[13] Optical study on intermediate-valence compounds Yb1-xLuxAl3
J L Lv(吕佳林), J L Luo(雒建林), N L Wang(王楠林). Chin. Phys. B, 2018, 27(1): 017803.
[14] Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy
Bing Shen(沈兵), Li Yu(俞理), Kai Liu(刘凯), Shou-Peng Lyu(吕守鹏), Xiao-Wen Jia(贾小文), E D Bauer, J D Thompson, Yan Zhang(张艳), Chen-Lu Wang(王晨露), Cheng Hu(胡成), Ying Ding(丁颖), Xuan Sun(孙璇), Yong Hu(胡勇), Jing Liu(刘静), Qiang Gao(高强), Lin Zhao(赵林), Guo-Dong Liu(刘国东), Zu-Yan Xu(许祖彦), Chuang-Tian Chen(陈创天), Zhong-Yi Lu(卢仲毅), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077401.
[15] Superconductivity in self-flux-synthesized single crystalline R2Pt3Ge5(R = La, Ce, Pr)
Q Sheng(盛琪), J Zhang(张建), K Huang(黄百畅), Z Ding(丁兆峰), X Peng(彭小冉), C Tan(谭程), L Shu(殳蕾). Chin. Phys. B, 2017, 26(5): 057401.
No Suggested Reading articles found!