Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 085204    DOI: 10.1088/1674-1056/27/8/085204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation

Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁)
Laboratory of Plasma Propulsion, Harbin Institute of Technology, HIT, Harbin, China
Abstract  Hall thruster has the advantages of simple structure, high specific impulse, high efficiency, and long service life, and so on. It is suitable for spacecraft attitude control, North and South position keeping, and other track tasks. The anode layer Hall thruster is a kind of Hall thruster. The thruster has a longer anode area and a relatively short discharge channel. In this paper, the effect of the channel length on the performance of the anode layer Hall thruster is simulated by the PIC simulation method. The simulation results show that the change of the channel length has significant effect on the plasma parameters, such as potential and plasma density and so on. The ionization region mainly concentrates at the hollow anode outlet position, and can gradually move toward the channel outlet as the channel length decreases. The collision between the ions and the wall increases with the channel length increasing. So the proper shortening of the channel length can increase the life of the thruster. Besides, the results show that there is a best choice of the channel length for obtaining the best performance. In this paper, thruster has the best performance under a channel length of 5 mm.
Keywords:  anode layer Hall thruster      channel length      potential     
Received:  22 March 2018      Published:  05 August 2018
PACS:  52.75.Di (Ion and plasma propulsion)  
  52.65.-y (Plasma simulation)  
  52.65.Pp (Monte Carlo methods)  
  52.65.Rr (Particle-in-cell method)  
Corresponding Authors:  Hui Liu, Zhong-Xi Ning     E-mail:  thruster@126.com;ningzx@hit.edu.cn

Cite this article: 

Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Wen-Jia Jiang(蒋文嘉), Zhong-Xi Ning(宁中喜), Run Li(黎润), Da-Ren Yu(于达仁) Influence of channel length on discharge performance of anode layer Hall thruster studied by particle-in-cell simulation 2018 Chin. Phys. B 27 085204

[1] Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
[2] Boeuf J P 2017 J. Appl. Phys. 121 011101
[3] Kim H, Choe W, Lim Y, Lee S and Park S 2017 Appl. Phys. Lett. 110 114101
[4] Yu D R, Qing S W, Wang X G, Ding Y J and Duan P 2011 Acta Phys. Sin. 60 025204 (in Chinese)
[5] Duan P, Qin H J, Zhou X W, Cao A N, Chen L and Gao H 2014 Chin. Phys. B 23 075203
[6] Goebel D M, Hofer R R, Mikellides I G, Katz I, Polk J E and Dotson B 2015 IEEE Trans. Plasma Sci. 43 118
[7] Yuge S and Tahara H 2005 The 29th International Electric Propulsion Conference, October 31-November 4, 2005, Princeton, USA, IEPC-2005-020
[8] Wei L Q, Han L, Yu D R and Guo N 2015 Chin. Phys. B 24 055201
[9] Komurasaki K, Mikami K and Kusamoto D 1996 The 32nd Aiaa/sae/asee Joint Propulsion Conference, July 1-3, 1996, Florida, USA, AIAA-96-3194
[10] Ding Y, Jia B Y, Sun H Z, Wei L Q, Peng W J, Li P and Yu D R 2018 Adv. Space Res. 61 837
[11] Yuge S, Kuwamura Y and Tahara H 2007 The 30th International Electric Propulsion Conference, September, 17-20 2007, Florence, Italy, IEPC-2007-336
[12] Kubota K, Oshio Y, Watanabe H, Cho S, Ohkawa Y and Funaki I 2016 The 52nd Aiaa/sae/asee Joint Propulsion Conference, July 25-27, 2016, Utah, USA, AIAA-2016-4628
[13] Mikellides I G, Katz I, Goebel D M and Jameson K K 2007 J. Appl. Phys. 101 063301
[14] Katz I, Anderson J R, Polk J E and Brophy J R 2003 J. Propul. Power 19 595
[15] Fujita D, Kawashima R, Ito Y, Akagi S, Suzuki J, Schonherr T, Koizumi H and Komurasaki K 2014 Vacuum 110 159
[16] Yokata S, Komurasaki K and Arakawa Y 2006 The 42nd Aiaa/sae/asee Joint Propulsion Conference, August 21-24, 2006, Colorado, USA, AIAA-2006-5170
[17] Liu H, Yu D R, Yan G J and Liu J Y 2008 Contrib. Plasma Phys. 48 603
[18] Liang S T, Liu H and Yu D R 2018 Chin. Phys. B 27 045201
[19] Liu H, Chen P B, Sun Q Q, Hu P, Meng Y C, Mao W and Yu D R 2016 Acta Astronaut. 126 35
[20] Yu D, Li H, Wu Z and Mao W 2007 Phys. Plasmas 14 064505
[21] Cao X F, Hang G R, Liu H and Yu D R 2017 Plasma Sci. Technol. 19 105501
[22] Fox J M 2007 “Advances in fully-kinetic PIC simulations of a near-vacuum Hall thruster and other plasma systems”, Ph. D. dissertation (Boston: Massachusetts Institute of Technology)
[23] Fife J M 1999 “Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters”, Ph. D. dissertation (Boston: Massachusetts Institute of Technology)
[24] Parra F I, Ahedo E, Fife J M and Martínezsánchez M 2006 J. Appl. Phys. 100 023304
[25] Szabo J J 2001 “Fully kinetic numerical modeling of a plasma thruster”, Ph. D. dissertation (Boston: Massachusetts Institute of Technology)
[26] Zhao Y J, Liu H, Yu D R, Hu P and Wu H 2014 J. Phys. D: Appl. Phys. 47 045201
[27] Liu H, Cheng P B, Zhao Y J and Yu D R 2015 Chin. Phys. B 24 085202
[28] Yuge S, Hara K, Cho S, Takahashi D, Komurasaki K and Arkawa Y 2009 The 31$th International Electric Propulsion Conference, September 20-24, 2009, Michigan, USA, IEPC-2009-149
[1] Directed transport of coupled Brownian motors in a two-dimensional traveling-wave potential
Wei-Xia Wu(吴魏霞), Zhi-Gang Zheng(郑志刚), Yan-Li Song(宋艳丽), Ying-Rong Han(韩英荣), Zhi-Cheng Sun(孙志成), Chen-Pu Li(李晨璞). Chin. Phys. B, 2020, 29(9): 090503.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[4] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[5] Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation
Mahmoud Farout, Ramazan Sever, Sameer M. Ikhdair. Chin. Phys. B, 2020, 29(6): 060303.
[6] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
[7] Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential
Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江). Chin. Phys. B, 2020, 29(5): 054201.
[8] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[9] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[10] Sintering reaction and microstructure of MAl ( M=Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[11] Artificial neural network potential for gold clusters
Ling-Zhi Cao(曹凌志), Peng-Ju Wang(王鹏举), Lin-Wei Sai(赛琳伟), Jie Fu(付洁), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2020, 29(11): 117304.
[12] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang(王骏), Jian Zhang(张建). Chin. Phys. B, 2020, 29(10): 108704.
[13] Role of quantum paths in generation of attosecond pulses
M R Sami, A Shahbaz. Chin. Phys. B, 2020, 29(10): 104207.
[14] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光), Kaifeng Chen(陈凯锋), Gang Wang(王岗), Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[15] Van der Waals interlayer potential of graphitic structures: From Lennard-Jones to Kolmogorov-Crespy and Lebedeva models
Zbigniew Koziol, Grzegorz Gawlik, Jacek Jagielski. Chin. Phys. B, 2019, 28(9): 096101.
No Suggested Reading articles found!