Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084210    DOI: 10.1088/1674-1056/27/8/084210

Influences of adsorptions of some inorganic molecules on electronic, optical, and thermodynamic properties of Mg12O12 nanocage: A computational approach

Asghar Mohammadi Hesari, Hamid Reza Shamlouei
Chemistry Department, Lorestan University, Khorram Abad, Lorestan, Iran
Abstract  According to density functional theory, we investigate the effects of BF3, BF4, BCl3, AlF3, AlCl3, AlBr3, BeF3, GaF3, GaCl3, GaBr3, NO3, BS2, BSO, BO2, F2, PF5, PCl5, and ASF5 molecules on the geometric, electronic, linear, and nonlinear optical properties of an Mg12O12 nanocage. The thermodynamic stability and feasibility of the adsorption process are investigated by analyzing the free energy. It is shown that the adsorptions of almost all molecules on the Mg12O12 surface are exothermic. The calculations of the polarizability of these nanoclusters show that among the studied molecules, BeF3 has the largest influence on the polarizability value (α≈315 a.u., the unit a.u. is short for atomic unit). The static first hyperpolarizability (β0) value is increased in the presence of these superhalogens. This increase is greatest for BeF3 and BF4 of which the highest value of the first hyperpolarizability (β0≈5775 a.u.) is related to a BeF3_c(e@Mg12O12) nanocluster. The adsorption position is a key to estimating the value of increasing the first hyperpolarizability.
Keywords:  Mg12O12      polarizability      hyperpolarizability      binding energy      nanocage      DFT calculation  
Received:  02 February 2018      Revised:  14 March 2018      Published:  05 August 2018
PACS:  42.70.Mp (Nonlinear optical crystals)  
Corresponding Authors:  Hamid Reza Shamlouei     E-mail:

Cite this article: 

Asghar Mohammadi Hesari, Hamid Reza Shamlouei Influences of adsorptions of some inorganic molecules on electronic, optical, and thermodynamic properties of Mg12O12 nanocage: A computational approach 2018 Chin. Phys. B 27 084210

[1] Sagadevan S and Varatharajan R 2013 Materials Physics and Mechanics 18 11
[2] Wang Y, Xie X and Goodson T 2005 Nano Lett. 5 2379
[3] Ji L L, Zhu B Q, Zhan T Y, Dai Y P, Zhu J, Ma W X and Lin Z Q 2011 Acta Phys. Sin. 60 094210 (in Chinese)
[4] Reshak A H, Stys D, Auluck S and Kityk I V 2010 J. Phys. Chem. B 114 18151
[5] Solomon R V, Veerapandian P, Vedha S A and Venuvanalingam P 2012 J. Phys. Chem. A 116 4667
[6] Luo J, Haller M, Ma H, Liu S, Kim T D, Tian Y, Chen B, Jang S H, Dalton L R and Jen A K Y 2004 J. Phys. Chem. B 108 8523
[7] Chen W, Li Z R, Wu D, Li Y, Sun C C and Gu F L 2005 J. Am. Chem. Soc. 127 10977
[8] Wang W Y, Ma N N, Wang C H, Zhang M Y, Sun S L and Qiu Y Q 2014 J. Mol. Graph Model. 48 28
[9] Qi H W, Sun Y X, Wang Z P, Zhang X Z, Yu F P, Sun X, Xu X G and Zhao X 2017 Chin. Phys. B 26 084201
[10] Han W, Zhou L D, Xiang Y, Tian Y, Wang F, Li F Q, Wang L Q, Feng B, Zhao J P, Zheng K X, Zhu Q H, Wei X F, Zheng W G and Gong M L 2016 Chin. Phys. Lett. 33 027803
[11] Ye T, Wei H, Hua Bao C, Fu Quan L, Bin F, Jun Pu Z, Kui Xing Z, Qi Hua Z and Wan G Z 2015 Chin. Phys. Lett. 32 027801
[12] Zhang J J, Wang H F and Hou J H 2018 Chin. Phys. B 27 034207
[13] Dong Z Z and Wei L S 2012 Acta Phys. Sin. 61 064214 (in Chinese)
[14] Muhammad S, Janjua M R S A and Su Z 2009 J. Phys. Chem. C 113 12551
[15] Mohammadi Hesari A, Shamlouei H R and Raoof Toosi A 2016 J. Mol. Model. 22 189
[16] Shamlouei H R, Nouri A, Mohammadi A and Dadkhah Tehrani A 2016 Physica E 77 48
[17] Omidi M, Shamlouei H R and Noormohammadbeigi M 2017 J. Mol. Model. 23 82
[18] Noormohammadbeigi M and Shamlouei H R 2018 J. Inorg. Organomet. Polym. Mater. 28 110
[19] Raoof Toosi A, Shamloue H Ri and Mohammadi Hesari A 2016 Chin. Phys. B 25 094220
[20] Becke A D 1988 Phys. Rev. A 38 3098
[21] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[22] Frisch M J, et al., Gaussian 09, revision A.1, Gaussian, Inc., 2009 Wallingford, CT
[23] Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51
[24] Buckingham A D 1967 Adv. Chem. Phys. 12 107
[25] McLean A D and Yoshimine M 1967 J. Chem. Phys. 47 1927
[26] Thanthiriwatte K S and Silva K M N D 2002 J. Mol. Struc. Thecochem. 617 169
[27] Wang J J, Zhou Z J, Bai Y, Liu Z B, Li Y, Wu D, Chen W, Li Z R and Sun C C 2012 J. Mater. Chem. 22 24610
[28] Shakerzdeh E, Tahmasebi E and Shamlouei H R 2015 SynthMet 204 17
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study
Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉). Chin. Phys. B, 2018, 27(9): 097102.
[3] Density functional theory study of structural stability for gas hydrate
Ping Guo(郭平), Yi-Long Qiu(邱奕龙), Long-Long Li(李龙龙), Qiang Luo(罗强), Jian-Fei Zhao(赵建飞), Yi-Kun Pan(潘意坤). Chin. Phys. B, 2018, 27(4): 043103.
[4] Laser-induced convenient fabrication of CdS nanocages with super-adsorption capability for methyl blue solution
Le Liu(刘乐), Lin-Lin Xu(徐林林), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(8): 085206.
[5] Elastic, thermodynamic, electronic, and optical properties of recently discovered superconducting transition metal boride NbRuB:An ab-initio investigation
F Parvin, S H Naqib. Chin. Phys. B, 2017, 26(10): 106201.
[6] Influence of alkali metal superoxides on structure, electronic, and optical properties of Be12O12 nanocage: Density functional theory study
Ali Raoof Toosi, Hamid Reza Shamlouei, Asghar Mohammadi Hesari. Chin. Phys. B, 2016, 25(9): 094220.
[7] Fractional-dimensional approach for excitons in GaAsfilms on AlxGa1-xAs substrates
Zhen-Hua Wu(武振华), Lei Chen(陈蕾), Qiang Tian(田强). Chin. Phys. B, 2016, 25(3): 037310.
[8] Tune-out wavelengths for the alkaline-metal atoms
Wei-Wei Yu(于伟威), Rong-Mei Yu(于荣梅), Yong-Jun Cheng(程勇军) and Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(2): 023101.
[9] Reduction of defect-induced ferromagnetic stability in passivated ZnO nanowires
Wu Fang, Meng Pei-Wen, Luo Kang, Liu Yun-Fei, Kan Er-Jun. Chin. Phys. B, 2015, 24(3): 037504.
[10] Correlation between the magic wavelengths and the polarization direction of the linearly polarized laser in the Ca+ optical clock
Liu Pei-Liang, Huang Yao, Bian Wu, Shao Hu, Qian Yuan, Guan Hua, Tang Li-Yan, Gao Ke-Lin. Chin. Phys. B, 2015, 24(3): 039501.
[11] Binding energies of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions with finitely thick potential barriers
Feng Zhen-Yu, Ban Shi-Liang, Zhu Jun. Chin. Phys. B, 2014, 23(6): 066801.
[12] Electronic structures of halogen-doped Cu2O based on DFT calculations
Zhao Zong-Yan, Yi Juan, Zhou Da-Cheng. Chin. Phys. B, 2014, 23(1): 017401.
[13] Preparation of gold tetrananocages and their photothermal effect
Yin Nai-Qiang, Liu Ling, Lei Jie-Mei, Jiang Tong-Tong, Zhu Li-Xin, Xu Xiao-Liang. Chin. Phys. B, 2013, 22(9): 097502.
[14] First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh
Niu Wen-Xia, Zhang Hong, Gong Min, Cheng Xin-Lu. Chin. Phys. B, 2013, 22(6): 066802.
[15] A novel method to prepare Au nanocage@SiO2 nanoparticle
Jiang Tong-Tong, Yin Nai-Qiang, Liu Ling, Lei Jie-Mei, Zhu Li-Xin, Xu Xiao-Liang. Chin. Phys. B, 2013, 22(12): 126102.
No Suggested Reading articles found!