GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Prev
|
|
|
Correlation between the magic wavelengths and the polarization direction of the linearly polarized laser in the Ca+ optical clock |
Liu Pei-Liang (刘培亮)a b c, Huang Yao (黄垚)a b, Bian Wu (边武)a b c, Shao Hu (邵虎)a b c, Qian Yuan (钱源)a b c, Guan Hua (管桦)a b, Tang Li-Yan (唐丽艳)a b, Gao Ke-Lin (高克林)a b |
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
b Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China;
c University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The magic wavelengths for different Zeeman components are measured based on the 40Ca+ optical clock. The dynamic dipole polarizability of a non-zero angular moment level has correlation with the polarization direction of the linearly polarized laser beam, and we show that the four hyperfine structure levels of 4s1/2, m = ± 1/2 and 3d5/2, m = ± 1/2 for 40Ca+ have the same dynamic dipole polarizability at the magic wavelength and a certain polarization direction. In addition, the existence of a specific direction of polarization may provide a new idea for improving the precision of magic wavelength measurement in experiment.
|
Received: 07 November 2014
Revised: 21 November 2014
Accepted manuscript online:
|
PACS:
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
76.70.Fz
|
(Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)
|
|
29.27.Hj
|
(Polarized beams)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB821301), the National Natural Science Foundation of China (Grant Nos. 11474318, 91336211, and 11034009), and the Chinese Academy of Sciences. |
Corresponding Authors:
Gao Ke-Lin
E-mail: klgao@wipm.ac.cn
|
Cite this article:
Liu Pei-Liang (刘培亮), Huang Yao (黄垚), Bian Wu (边武), Shao Hu (邵虎), Qian Yuan (钱源), Guan Hua (管桦), Tang Li-Yan (唐丽艳), Gao Ke-Lin (高克林) Correlation between the magic wavelengths and the polarization direction of the linearly polarized laser in the Ca+ optical clock 2015 Chin. Phys. B 24 039501
|
[1] |
Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
|
[2] |
Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V and Yudin V I 2008 Phys. Rev. Lett. 100 103002
|
[3] |
Yi L, Mejri S, McFerran J J, Le Coq Y and Bize S 2011 Phys. Rev. Lett. 106 073005
|
[4] |
Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B 43 202001
|
[5] |
Topcu T and Derevianko A 2014 Phys. Rev. A 89 023411
|
[6] |
Mitroy J and Tang L Y 2013 Phys. Rev. A 88 052515
|
[7] |
Safronova M S, Safronova U I and Clark C W 2013 Phys. Rev. A 87 052504
|
[8] |
Zhou X J, Xu X, Chen X Z and Chen J B 2010 Phys. Rev. A 81 012115
|
[9] |
Yu G H, Zhong J Q, Li R B, Wang J and Zhan M S 2011 Chin. Phys. Lett. 28 073201
|
[10] |
Ye J, Kimble H J and Katori H 2008 Science 320 1734
|
[11] |
Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2014 arXiv:1409.2576
|
[12] |
Roberts B M, Dzuba V A and Flambaum V V 2013 Phys. Rev. A 87 054502
|
[13] |
Sahoo B K, Wansbeek L W, Jungmann K and Timmermans R G E 2009 Phys. Rev. A 79 052512
|
[14] |
Zang X R, Zhang T G and Chen J B 2012 Chin. Phys. Lett. 29 090601
|
[15] |
Takamoto M, Katori H, Marmo S I, Ovsiannikov V D and Palćhikov V G 2009 Phys. Rev. Lett. 102 063002
|
[16] |
Ludlow A D, Zelevinsky T, Campbell G K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W, Foreman S M, Ye J, Fortier T M, Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N D, Beck K M and Oates C W 2008 Science 319 1805
|
[17] |
Park C Y, Park H Y, Yu D H, Lee W K, Park S E, Kim E B, Lee S K, Cho J W, Yoon T H, Mun J, Park S J, Kwon T Y and Lee S B 2013 Metrologia 50 119
|
[18] |
Takamoto M, Hong F L, Higashi R and Katori H 2005 Nature 435 321
|
[19] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[20] |
Margolis H S 2009 J. Phys. B 42 154017
|
[21] |
Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
|
[22] |
Tang L Y, Yan Z C, Shi T Y, and Babb J F 2014 Phys. Rev. A 90 012524
|
[23] |
Nandy D K, Singh Y, Shah B P and Sahoo B K 2012 Phys. Rev. A 86 052517
|
[24] |
Dzuba1 V A and Derevianko A 2010 J. Phys. B 43 074011
|
[25] |
Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
|
[26] |
Arora B and Sahoo B K 2012 Phys. Rev. A 86 033416
|
[27] |
Lepers M, Wyart J F and Dulieu1 O 2014 Phys. Rev. A 89 022505
|
[28] |
Liu P L, Huang Y, Bian W, Shao H, Qian Y, Guan H and Gao K L 2014 Chin. Phys. Lett. 31 113702
|
[29] |
Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503
|
[30] |
Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
|
[31] |
Guan H, Liu Q, Huang Y, Guo B, Qu W, Cao J, Huang G, Huang X and Gao K 2011 Opt. Commun. 284 217
|
[32] |
Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|