Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 073102    DOI: 10.1088/1674-1056/27/7/073102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model

Jun-Hang Ren(任军航)1,2, Ming-Yong Ye(叶明勇)1,2, Xiu-Min Lin(林秀敏)1,2
1 Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China;
2 Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen 361005, China
Abstract  We consider the construction of exact eigenstates of the two-dimensional Fermi-Hubbard model defined on an L×L lattice with a periodic condition. Based on the characteristics of Slater determinants, several methods are introduced to construct exact eigenstates of the model. The eigenstates constructed are independent of the on-site electron interaction and some of them can also represent exact eigenstates of the two-dimensional Bose-Hubbard model.
Keywords:  Hubbard model      exact eigenstate      Slater determinant  
Received:  19 March 2018      Revised:  18 April 2018      Published:  05 July 2018
PACS:  31.15.aq (Strongly correlated electron systems: generalized tight-binding method)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674059) and Natural Science Foundation of Fujian Province, China (Grant Nos. 2016J01008 and 2016J01009).
Corresponding Authors:  Ming-Yong Ye     E-mail:  myye@fjnu.edu.cn

Cite this article: 

Jun-Hang Ren(任军航), Ming-Yong Ye(叶明勇), Xiu-Min Lin(林秀敏) Slater determinant and exact eigenstates of the two-dimensional Fermi-Hubbard model 2018 Chin. Phys. B 27 073102

[1] Hubbard J 1963 Proc. R. Soc. A 276 238
[2] Hayes B 2009 Am. Sci. 97 438
[3] Yun S J, Dong T K and Zhu S N 2017 Chin. Phys. Lett. 34 080201
[4] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M and Zwierlein M W 2016 Science 353 1260
[5] Wang Y L, Huang L, Du L and Dai X 2016 Chin. Phys. B 25 037103
[6] Lieb E H and Wu F Y 2003 Physica A 321 1
[7] Essler F H L, Frahm H, Göhmann F, Klümper A and Korepin V E 2005 The One-dimensional Hubbard Model (Cambridge:Cambridge University Press) p. 5
[8] Li Y Y, Cao J P, Yang W L, Shi K J and Wang Y P 2014 Nucl. Phys. B 879 98
[9] Yang C N and Zhang S C 1990 Mod. Phys. Lett. B 4 759
[10] Ye M Y and Lin X M 2018 Phys. Status Solidi B 255 1700321
[11] Su G and Ge M L 1992 Commun. Theor. Phys. 17 1
[12] Shen S Q, Qiu Z M and Tian G S 1994 Phys. Rev. Lett. 72 1280
[13] Chen Y H, Tao H S, Yao D X and Liu W M 2012 Phys. Rev. Lett. 108 246402
[14] Yang C N 1989 Phys. Rev. Lett. 63 2144
[1] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[2] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[3] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[4] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
[5] Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study
Wei Xing-Bo, Meng Ye-Ming, Wu Zhe-Ming, Gao Xian-Long. Chin. Phys. B, 2015, 24(11): 117101.
[6] Disappearance of the Dirac cone in silicene due to the presence of an electric field
D. A. Rowlands, Zhang Yu-Zhong. Chin. Phys. B, 2014, 23(3): 037101.
[7] Extended Bose–Hubbard model with pair hopping on triangular lattice
Wang Yan-Cheng, Zhang Wan-Zhou, Shao Hui, Guo Wen-An. Chin. Phys. B, 2013, 22(9): 096702.
[8] Effects of effective attractive multi-body interaction on quantum phase and transport dynamics of a strongly correlated bosonic gas across the superfluid to Mott insulator transition
Sun Jian-Fang, Cui Guo-Dong, Jiang Bo-Nan, Qian Jun, Wang Yu-Zhu. Chin. Phys. B, 2013, 22(11): 110307.
[9] Alternative routes to equivalent classical models of a quantum system
M. Radonjić, Slobodan Prvanović, Nikola Burić. Chin. Phys. B, 2012, 21(12): 120301.
[10] Effective Bose–Hubbard interaction with enhanced nonlinearity in an array of coupled cavities
Zhou Ling, Liu Zhong-Ju, Yan Wei-Bin, Mu Qing-Xia. Chin. Phys. B, 2011, 20(7): 074205.
[11] Quantum phase transition and von Neumann entropy of quasiperiodic Hubbard chains
Zhu Xuan, Tong Pei-Qing. Chin. Phys. B, 2008, 17(5): 1623-1628.
[12] The pairing correlations in the phased t-U Hubbard model
Liu Zi-Xin, Liu Ping, Liu Ya, Wen Sheng-Hui. Chin. Phys. B, 2004, 13(2): 229-233.
[13] VARIATIONAL STUDY ON MISSING BOND-CHARGE REPULSION ON THE EXTENDED HUBBARD MODEL: EFFECTS ON POLYACETYLENE
Sun Lei, Zhang Yu-mei, Feng Wei-guo. Chin. Phys. B, 2001, 10(5): 384-389.
[14] CHARGE AND SPIN GAPS IN THE DIMERIZED HUBBARD MODEL
Ding Guo-hui, Ye Fei, Xu Bo-wei. Chin. Phys. B, 2000, 9(8): 615-618.
No Suggested Reading articles found!