Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 058701    DOI: 10.1088/1674-1056/27/5/058701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Theoretical investigation of tunable polarized broadband terahertz radiation from magnetized gas plasma

Xin-Yang Gu(顾新杨)1, Jin-Song Liu(刘劲松)1, Zhen-Gang Yang(杨振刚)2, Sheng-Lie Wang(汪盛烈)2, Ke-Jia Wang(王可嘉)1
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  

The mechanism of terahertz (THz) pulse generation with a static magnetic field imposed on a gas plasma is theoretically investigated. The investigation demonstrates that the static magnetic field alters the electron motion during the optical field ionization of gas, leading to a two-dimensional asymmetric acceleration process of the ionized electrons. Simulation results reveal that elliptically or circularly polarized broadband THz radiation can be generated with an external static magnetic field imposed along the propagation direction of the two-color laser. The polarization of the THz radiation can be tuned by the strength of the external static magnetic field.

Keywords:  terahertz      plasma      magnetic field      polarization     
Received:  16 November 2017      Published:  05 May 2018
PACS:  87.50.U-  
  52.25.Jm (Ionization of plasmas)  
  52.38.Fz (Laser-induced magnetic fields in plasmas)  
  95.30.Gv (Radiation mechanisms; polarization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11574105,and 61475054) and the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029).

Corresponding Authors:  Ke-Jia Wang     E-mail:  wkjtode@sina.com

Cite this article: 

Xin-Yang Gu(顾新杨), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), Sheng-Lie Wang(汪盛烈), Ke-Jia Wang(王可嘉) Theoretical investigation of tunable polarized broadband terahertz radiation from magnetized gas plasma 2018 Chin. Phys. B 27 058701

[1] Hamster H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725
[2] Wang T J, Marceau C, Chen Y, Yuan S, Théberge F, Chateauneuf M, Dubois J and Chin S L 2010 Appl. Phys. Lett. 96 211113
[3] Thomson M D, Kreş M, Löffler T and Roskos H G 2007 Laser Photon. Rev. 1 349
[4] Dai J, Liu J and Zhang X C 2011 IEEE J. Sel. Top. Quant. Electron. 17 183
[5] Oh T I, Yoo Y J, You Y S and Kim K Y 2014 Appl. Phys. Lett. 105 041103
[6] Matsubara E, Nagai M and Ashida M 2012 Appl. Phys. Lett. 101 011105
[7] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[8] Clough B, Dai J and Zhang X C 2012 Mater. Today 15 50
[9] Kim K Y, Taylor A J, Glownia J H and Rodriguez G 2008 Nat. Photon. 2 605
[10] Andreeva V A, Kosareva O G, Panov N A, Shipilo D E, Solyankin P M, Esaulkov M N and Chin S L 2016 Phys. Rev. Lett. 116 063902
[11] Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
[12] de Alaiza Martínez P G, Babushkin I, Bergé L, Skupin S, Cabrera-Granado E, Köhler C and Herrmann J 2015 Phys. Rev. Lett. 114 183901
[13] Wang C L, Yang Z G, Liu J S, Wang S L and Wang K J 2015 Chin. Phys. B 24 088703
[14] You Y, Oh T and Kim K Y 2013 Opt. Lett. 38 1034
[15] Lu X and Zhang X C 2012 Phys. Rev. Lett. 108 123903
[16] Wang H G, Li N, Bai Y, Liu P, Wang Z S and Liu C P 2017 Opt. Express 25 30987
[17] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 253901
[18] Sims J, Baca A and Boebinger G 2000 IEEE T. Appl. Supercon. 10 510
[19] Zherlitsyn S, Bianchi A D and Herrmannsdoerfer T 2006 IEEE T. Appl. Supercon. 16 1660
[20] Singleton J, Mielke C H, Migliori A, Boebinger G S and Lacerda A H 2004 Physica B 346 614
[21] Takeyama S and Kojima E 2011 J. Phys. D:Appl. Phys. 44 425003
[22] Bykov A I, Dolotenko M I, Kolokolchikov N P, Selemir V D and Tatsenko O M 2001 Physica B 294 574
[23] Santos J J, Bailly-Grandvaux M, Giuffrida L, et al. 2015 New J. Phys. 17 083051
[24] Law K F F, Bailly-Grandvaux M, Morace A, Sakata S, Matsuo K, Kojima S, Lee S, Vaisseau X, Arikawa Y, Yogo A, Kondo K, Zhang Z, Bellei C, Santos J J, Fujioka S and Azechi H 2016 Appl. Phys. Lett. 108 091104
[25] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259
[1] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[2] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[3] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[4] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[5] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[6] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[7] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[8] Novel compact and lightweight coaxial C-band transit-time oscillator
Xiao-Bo Deng(邓晓波), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Bing-Fang Deng(邓秉方), Li-Li Song(宋莉莉), Fu-Xiang Yang(阳福香), Wei-Li Xu(徐伟力). Chin. Phys. B, 2020, 29(9): 095205.
[9] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[10] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[11] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[12] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[13] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[14] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[15] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
No Suggested Reading articles found!