Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 057803    DOI: 10.1088/1674-1056/27/5/057803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controlling flexural waves in thin plates by using transformation acoustic metamaterials

Xing Chen(陈幸)1,2, Li Cai(蔡力)1,2, Ji-Hong Wen(温激鸿)1,2
1 Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China;
2 College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China
Abstract  In this study, we design periodic grille structures on a single homogenous thin plate to achieve anisotropic acoustic metamaterials that can control flexural waves. The metamaterials can achieve the bending control of flexural waves in a thin plate at will by designing only one dimension in the thickness direction, which makes it easier to use this metamaterial to design transformation acoustic devices. The numerical simulation results show that the metamaterials can accurately control the bending waves over a wide frequency range. The experimental results verify the validity of the theoretical analysis. This research provides a more practical theoretical method of controlling flexural waves in thin-plate structures.
Keywords:  acoustic metamaterials      coordinate transformation      flexural wave      grille structure  
Received:  11 October 2017      Revised:  06 March 2018      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  46.70.De (Beams, plates, and shells)  
  62.30.+d (Mechanical and elastic waves; vibrations)  
Corresponding Authors:  Li Cai, Ji-Hong Wen     E-mail:  cailiyunnan@163.com;wenjihong_nudt1@vip.sina.com

Cite this article: 

Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿) Controlling flexural waves in thin plates by using transformation acoustic metamaterials 2018 Chin. Phys. B 27 057803

[1] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[2] Li J and Chan C T 2004 Phys. Rev. E 70 055602
[3] Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452
[4] Qian J, Xia J P, Sun H X, Yuan S Q, Ge Y and Yu X Z 2017 J. Appl. Phys. 122 244501
[5] Lu W J, Jia H, Bi Y F, Yang Y Z and Yang J 2017 J. Acoust. Soc. Am. 142 84
[6] Xia J P, Sun H X and Yuan S Q 2017 Sci. Rep. 7 8151
[7] Wang Y Y, Ding E L, Liu X Z and Gong X F 2016 Chin. Phys. B 12 124305
[8] Yang Y Z, Jia H, Lu W J, Sun Z Y and Yang J 2017 J. Appl. Phys. 122 054502
[9] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[10] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[11] Zhang B L, Luo Y, Liu X G and Barbastathis G 2011 Phys. Rev. Lett. 106 033901
[12] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[13] Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301
[14] Rahm M, Roberts D A, Pendry J B and Smith D R 2008 Opt. Express 16 11555
[15] Christensen J and De Abajo F J G 2010 Appl. Phys. Lett. 97 164103
[16] Jia H, Ke M Z, Hao R, Ye Y T, Liu F and Liu Z Y 2010 Appl. Phys. Lett. 97 173507
[17] Milton G W, Briane M and Willis J R 2006 New J. Phys. 8 248
[18] Farhat M, Guenneau S and Enoch S 2009 Phys. Rev. Lett. 103 024301
[19] Farhat M, Guenneau S, Enoch S and Movchan A B 2009 Phys. Rev. B 79 033102
[20] Schoenberg M and Sen P N 1983 J. Acoust. Soc. Am. 73 61
[21] Nicolas S, Manfred W and Martin W 2012 Phys. Rev. Lett. 108 014301
[22] Torrent D and Sánchez-Dehesa J 2008 New J. Phys. 10 063015
[23] Chen H Y and Chan C T 2007 Appl. Phys. Lett. 91 183518
[24] Graff K F 1992 Wave Motion in Elastic Solids (Shanghai:Tongji University Press) pp. 247-252
[25] Pao Y H and Mow C C 1993 Diffraction of Elastic Waves and Dynamic Stress Concentrations (Beijing:Science Press) pp. 52-55
[1] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[2] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[3] Flexural wave band-gaps in phononic metamaterial beam with hybrid shunting circuits
Zhang Hao, Wen Ji-Hong, Chen Sheng-Bing, Wang Gang, Wen Xi-Sen. Chin. Phys. B, 2015, 24(3): 036201.
[4] Quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge
Xie Zhi-Kun, Pan Wei-Zhen, Yang Xue-Jun. Chin. Phys. B, 2013, 22(3): 039701.
[5] Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials
Li Li, Wen Ji-Hong, Cai Li, Zhao Hong-Gang, Wen Xi-Sen. Chin. Phys. B, 2013, 22(1): 014301.
[6] Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation
Pan Wei-Zhen, Yang Xue-Jun, Xie Zhi-Kun. Chin. Phys. B, 2011, 20(4): 049701.
[7] Effect of coupling between linear absorption and nonlinear absorption on Z-scan measurements
Zang Wei-Ping, Tian Jian-Guo, Liu Zhi-Bo, Zhou Wen-Yuan, Song Feng, Zhang Chun-Ping. Chin. Phys. B, 2005, 14(3): 546-550.
[8] Hawking radiation of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black hole
Wu Shuang-Qing, Cai Xu. Chin. Phys. B, 2002, 11(7): 661-665.
No Suggested Reading articles found!