Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047501    DOI: 10.1088/1674-1056/27/4/047501

Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique

Rui Li(李锐)1,2, Yao Liu(刘瑶)1,2, Shu-Lan Zuo(左淑兰)1,2, Tong-Yun Zhao(赵同云)1,2, Feng-Xia Hu(胡凤霞)1,2, Ji-Rong Sun(孙继荣)1,2, Bao-Gen Shen(沈保根)1,2
1. State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China

Data-driven technique is a powerful and efficient tool for guiding materials design, which could supply as an alternative to trial-and-error experiments. In order to accelerate composition design for low-cost rare-earth permanent magnets, an approach using composition to estimate coercivity (Hcj) and maximum magnetic energy product ((BH)max) via machine learning has been applied to (PrNd-La-Ce)2Fe14B melt-spun magnets. A set of machine learning algorithms are employed to build property prediction models, in which the algorithm of Gradient Boosted Regression Trees is the best for predicting both Hcj and (BH)max, with high accuracies of R2=0.88 and 0.89, respectively. Using the best models, predicted datasets of Hcj or (BH)max in high-dimensional composition space can be constructed. Exploring these virtual datasets could provide efficient guidance for materials design, and facilitate the composition optimization of 2:14:1 structure melt-spun magnets. Combined with magnets' cost performance, the candidate cost-effective magnets with targeted properties can also be accurately and rapidly identified. Such data analytics, which involves property prediction and composition design, is of great time-saving and economical significance for the development and application of LaCe-containing melt-spun magnets.

Keywords:  permanent magnet      materials design      machine learning      property prediction  
Received:  14 January 2018      Revised:  27 February 2018      Published:  05 April 2018
PACS:  75.47.Np (Metals and alloys)  
  75.50.Ww (Permanent magnets)  

Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant No. 51590880), the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05), and the National Key Research and Development Program of China (Grant No. 2016YFB0700903).

Corresponding Authors:  Bao-Gen Shen     E-mail:

Cite this article: 

Rui Li(李锐), Yao Liu(刘瑶), Shu-Lan Zuo(左淑兰), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根) Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique 2018 Chin. Phys. B 27 047501

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Pathak A K, Khan M, Gschneidner K A, McCallum R W, Zhou L, Sun K, Kramer M J and Pecharsky V K 2016 Acta Mter. 103 211
[4] Pathak A K, Khan M, Gschneidner Jr K A, McCallum R W, Zhou L, Sun K, Dennis K W, Zhou C, Pinkerton F E, Kramer M J and Pecharsky V K 2015 Adv. Mater. 27 2663
[5] Zuo W L, Zuo S L, Li R, Zhao T Y, Hu F X, Sun J R, Zhang X F, Liu J P and Shen B G 2017 J. Alloys Compd. 695 1786
[6] Li Z B, Shen B G, Zhang M, Hu F X and Sun J R 2015 J. Alloys Compd. 628 325
[7] Herbst J F 1991 Rev. Mod. Phys. 63 819
[8] Nosengo N 2016 Nature 533 22
[9] Agrawal A and Choudhary A 2016 APL Mater. 4 053208
[10] Agrawal A, Deshpande P D, Cecen A, Basavarsu G P, Choudhary A N and Kalidindi S R 2014 Interg. Mater. Manuf. Innov. 3 8
[11] Sendek A D, Yang Q, Cubuk E D, Duerloo K-A N, Cui Y and Reed E J 2017 Energ. Environ. Sci. 10 306
[12] Xue D, Balachandran P V, Hogden J, Theiler J, Xue D and Lookman T 2016 Nat. Commun. 7 11241
[13] Meredig B, Agrawal A, Kirklin S, Saal J E, Doak J W, Thompson A, Zhang K, Choudhary A and Wolverton C 2014 Phys. Rev. B 89 094104
[14] Kaminski B, Jakubczyk M and Szufel P 2018 Cent. Eur. J. Oper. Res. 26 135
[15] Smola A J and Scholkopf B 2004 Stat. Comput. 14 199
[16] Friedman J H 2001 Ann. Stat. 29 1189
[17] Sun Y T, Bai H Y, Li M Z and Wang W H 2017 J. Phys. Chem. Lett. 8 3434
[18] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay E 2011 J. Mach. Learn. Res. 12 2825
[19] Li R, Shang R X, Xiong J F, Liu D, Kuang H, Zuo W L, Zhao T Y, Sun J R and Shen B G 2017 AIP Adv. 7 056207
[20] Rodgers J L and Nicewander W A 1988 Am. Stat. 42 59
[1] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[2] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[3] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[4] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[5] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[6] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[7] Methods and applications of RNA contact prediction
Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†. Chin. Phys. B, 2020, 29(10): 108708.
[8] Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon
M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman. Chin. Phys. B, 2020, 29(1): 014211.
[9] Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials
Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 067503.
[10] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[11] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
[12] Rare earth permanent magnets prepared by hot deformation process
Ren-Jie Chen(陈仁杰), Ze-Xuan Wang(王泽轩), Xu Tang(唐旭), Wen-Zong Yin(尹文宗), Chao-Xiang Jin(靳朝相), Jin-Yun Ju(剧锦云), Don Lee(李东), A-Ru Yan(闫阿儒). Chin. Phys. B, 2018, 27(11): 117504.
[13] Accomplishment and challenge of materials database toward big data
Yibin Xu(徐一斌). Chin. Phys. B, 2018, 27(11): 118901.
[14] Influence of misch metal content on microstructure and magnetic properties of R-Fe-B magnets sintered by dual alloy method
Rong-Xiang Shang(商荣翔), Jie-Fu Xiong(熊杰夫), Dan Liu(刘丹), Shu-Lan Zuo(左淑兰), Xin Zhao(赵鑫), Rui Li(李锐), Wen-Liang Zuo(左文亮), Tong-Yun Zhao(赵同云), Ren-Jie Chen(陈仁杰), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2017, 26(5): 057502.
[15] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
No Suggested Reading articles found!