Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038702    DOI: 10.1088/1674-1056/27/3/038702

A computational study of the chemokine receptor CXCR1 bound with interleukin-8

Yang Wang(王洋)1, Cecylia Severin Lupala1, Ting Wang(王亭)2, Xuanxuan Li(李选选)1,3, Ji-Hye Yun4, Jae-hyun Park4, Zeyu Jin(金泽宇)4, Weontae Lee4, Leihan Tan(汤雷翰)1,5, Haiguang Liu(刘海广)1
1 Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China;
2 Genome Center, University of California, Davis, 451 East Health Science Drive, Davis, CA, 95616, USA;
3 Department of Engineering physics, Tsinghua University, Beijing 100086, China;
4 Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea;
5 Department of Physics and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
Abstract  CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-Ⅱ crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation.
Keywords:  CXCR1-IL8 complex      homology modeling      ligand binding      molecular dynamics  
Received:  24 October 2017      Revised:  07 December 2017      Accepted manuscript online: 
PACS:  87.15.K- (Molecular interactions; membrane-protein interactions) (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213).
Corresponding Authors:  Haiguang Liu     E-mail:

Cite this article: 

Yang Wang(王洋), Cecylia Severin Lupala, Ting Wang(王亭), Xuanxuan Li(李选选), Ji-Hye Yun, Jae-hyun Park, Zeyu Jin(金泽宇), Weontae Lee, Leihan Tan(汤雷翰), Haiguang Liu(刘海广) A computational study of the chemokine receptor CXCR1 bound with interleukin-8 2018 Chin. Phys. B 27 038702

[1] Bonecchi R, Galliera E, Borroni E M, Corsi M M, Locati M and Mantovani A 2009 Front. Biosci. Landmark Ed. 14 540
[2] Zlotnik A and Yoshie O 2012 Immunity 36 705
[3] Griffith J W, Sokol C L and Luster A D 2014 Annu. Rev. Immunol. 32 659
[4] Salanga C L and Handel T M 2011 Exp. Cell Res. 317 590
[5] Baggiolini M, Dewald B and Moser B 1993 Adv. Immunol. 55 97
[6] Stillie R, Farooq S M, Gordon J R and Stadnyk A W 2009 J. Leukoc. Biol. 86 529
[7] O'Hayre M, Salanga C L, Handel T M and Allen S J 2008 Biochem. J. 409 635
[8] Clore G M, Gronenborn A M, Appella E, Yamada M and Matsushima K 1990 Biochemistry 29 1689
[9] Baldwin E T, Weber I T, St Charles R, Xuan J C, Appella E, Yamada M, Matsushima K, Edwards B F, Clore G M, Gronenborn A M, Rajarathnam K, Clark-Lewis I and Sykes B D 1995 Biochemistry 34 12983
[10] Rajarathnam K, Clark-Lewis I and Sykes B D 1995 Biochemistry 34 12983
[11] Burrows S D, Doyle M L, Murphy K P, Franklin S G, White J R, Brooks I, McNulty D E, Scott M O, Knutson J R, Porter D, Young P R and Hensley P 1994 Biochemistry 33 12741
[12] Joseph P R B and Rajarathnam K 2015 Protein Sci. 24 81
[13] Nasser M W, Raghuwanshi S K, Grant D J, Jala V R, Rajarathnam K and Richardson R M 2009 J. Immunol. 183 3425
[14] Joseph P R B, Sarmiento J M, Mishra A K, Das S T, Garofalo R P, Navarro J and Rajarathnam K 2010 J. Biol. Chem. 285 29262
[15] Rajagopalan L and Rajarathnam K 2004 J. Biol. Chem. 279 30000
[16] LaRosa G J, Thomas K M, Kaufmann M E, Mark R, White M, Taylor L, Gray G, Witt D and Navarro J 1992 J. Biol. Chem. 267 25402
[17] Gayle R B, Sleath P R, Srinivason S, Birks C W, Weerawarna K S, Cerretti D P, Kozlosky C J, Nelson N, Bos T Vanden and Beckmann M P 1993 J. Biol. Chem. 268 7283
[18] Szpakowska M, Fievez V, Arumugan K, Van Nuland N, Schmit J C and Chevigné A 2012 Biochem. Pharmacol. 84 1366
[19] Clubb R T, Omichinski J G, Clore G M and Gronenborn A M 1994 FEBS Lett. 338 93
[20] Barter E F and Stone M J 2012 Biochemistry 51 1322
[21] Park S H, Casagrande F, Cho L, Albrecht L and Opella S J 2011 J. Mol. Biol. 414 194
[22] Kendrick A A, Holliday M J, Isern N G, Zhang F, Camilloni C, Huynh C, Vendruscolo M, Armstrong G and Eisenmesser E Z 2014 Protein Sci. 23 464
[23] Girrbach M, Meliciani I, Berthold S, Oster A, Brurein F, Strunk T, Wadhwani P, Berensmeier S, Wenzel W and Schmitz K 2014 Phys. Chem. Chem. Phys. 16 8036
[24] Skelton N J, Quan C, Reilly D and Lowman H 1999 Structure 7 157
[25] Fernando H, Nagle G T and Rajarathnam K 2007 FEBS J. 274 241
[26] Hebert C A, Chuntharapai A, Smith M, Colby T, Kim J and Horuk R 1993 J. Biol. Chem. 268 18549
[27] Leong S R, Kabakoff R C and Hebert C A 1994 J. Biol. Chem. 269 19343
[28] Park S H, Das B B, Casagrande F, Tian Y, Nothnagel H J, Chu M, Kiefer H, Maier K, De Angelis A A, Marassi F M and Opella S J 2012 Nature 491 7426
[29] Liou J W, Chang F T, Chung Y, Chen W Y, Fischer W B and Hsu H J 2014 PLoS One 94 e94178
[30] Qin L, Kufareva I, Holden L G, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han G W, Cherezov V, Abagyan R, Stevens R C, Handel T M and Zhang Y 2015 Science 347 1117-22
[31] Zhang Y 2008 Bioinformatics 9 40
[32] Isberg V, Mordalski S, Munk C, Rataj K, Harpsoe K, Hauser A S, Vroling B, Bojarski A J, Vriend G and Gloriam D E 2016 Nucleic Acids Res. 44 D356
[33] Lomize M A, Pogozheva I D, Joo H, Mosberg H I and Lomize A L 2012 Nucleic Acids Res. 40
[34] Jo S, Lim J B, Klauda J B and Im W 2009 Biophys. J. 97 50
[35] Lee J, Cheng X, Swails J M, Yeom M S, Eastman P K, Lemkul J A, Wei S, Buckner J, Jeong J C, Qi Y, Jo S, Pande V S, Case D A, Brooks C L, MacKerell A D, Klauda J B and Im W 2016 J. Chem. Theory Comput. 12 405
[36] Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[37] Word J M, Lovell S C, Richardson J S and Richardson D C 1999 J. Mol. Biol. 285 1735
[38] Case D A, Cheatham T E, Darden T, Gohlke H, Luo R, Merz K M, Onufriev A, Simmerling C, Wang B and Woods R J 2005 J. Comput. Chem. 26 1668
[39] Roe D R and Cheatham T E 2013 J. Chem. Theory Comput. 9 3084
[40] Baker D and Sali A 2001 Science 294 93
[41] Kc D B 2016 Brief. Bioinform. 31 1
[42] Cacalano G, Lee J, Kikly K, Ryan A M, Pitts-Meek S, Hultgren B, Wood W I and Moore M W 1994 Science 265 682
[43] Pu M, Xu Z, Peng Y, Hou Y, Liu D, Wang Y, Liu H, Song G and Liu Z 2017 Protein & Cell 10 1007
[1] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[2] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[3] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[7] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[8] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[9] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[10] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[13] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[14] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[15] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
No Suggested Reading articles found!