Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 033401    DOI: 10.1088/1674-1056/27/3/033401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Solvent effects and potential of mean force study of the SN2 reaction of CH3F+CN- in water

Chen Li(李琛), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友)
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  

We used a combined quantum mechanics and molecular mechanics (QM/MM) method to investigate the solvent effects and potential of mean force of the CH3F+CN- reaction in water. Comparing to gas phase, the water solution substantially affects the structures of the stationary points along the reaction path. We quantitatively obtained the solvent effects' contributions to the reaction:1.7 kcal/mol to the activation barrier and -26.0 kcal/mol to the reaction free energy. The potential mean of force calculated with the density functional theory/MM theory has a barrier height at 19.7 kcal/mol, consistent with the experimental result at 23.0 kcal/mol; the calculated reaction free energy at -43.5 kcal/mol is also consistent with the one estimated based on the gas-phase data at -39.7 kcal/mol.

Keywords:  transition state      quantum mechanics and molecular mechanics      solvent effect      potential of mean force  
Received:  16 October 2017      Revised:  04 December 2017      Published:  05 March 2018
PACS:  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  34.20.Cf (Interatomic potentials and forces)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  34.50.Lf (Chemical reactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11774206) and Taishan Scholarship Fund from Shandong Province, China.

Corresponding Authors:  Dunyou Wang     E-mail:  dywang@sdnu.edu.cn

Cite this article: 

Chen Li(李琛), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友) Solvent effects and potential of mean force study of the SN2 reaction of CH3F+CN- in water 2018 Chin. Phys. B 27 033401

[1] Wilbur J L and Brauman J I 1991 J. Am. Chem. Soc. 113 9699
[2] Wolfe S and Mitchell D J 1981 J. Am. Chem. Soc. 103 7694
[3] Hu W P and Truhlar D G 1994 J. Am. Chem. Soc. 116 7797
[4] Tanaka K, Mackay G I, Payzant J D and Bohme D K 1976 Can. J. Chem. 54 1643
[5] Graul S T and Bowers M T 1991 J. Am. Chem. Soc. 113 9696
[6] Hase W L 1994 Science 266 998
[7] Viggiano A, Morris R A, Paschkewitz J S and Paulson J F 1992 J. Am. Chem. Soc. 114 10477
[8] Parthiban S, Oliveira G and Martin J M 2001 J. Phys. Chem. A 105 895
[9] Viggiano A, Paschkewitz J S, Morris R A and Paulson J F 1991 J. Am. Chem. Soc. 113 9404
[10] Cyr D M, Posey L A, Bishea G A, Han C and Johnson M A 1991 J. Am. Chem. Soc. 113 9697
[11] Manikandan P, Zhang J and Hase W L 2012 J. Phys. Chem. A 116 3061
[12] Sun R, Davda C J, Zhang J X and Hase W L 2015 Phys. Chem. Chem. Phys. 17 2589
[13] Xie J and Hase W L 2016 Science 352 32
[14] Mann D J and Hase W L 1998 J. Phys. Chem. A 102 6208
[15] Mikosch J, Trippel S, Eichhorn C, Otto R, Lourderaj U, Zhang J X, Hase W L, Weidemüller M and Wester R 2008 Science 319 183
[16] Szabó I and Czakó G 2015 Nat. Commun. 6 5972
[17] Yin H, Wang D Y and Valiev M 2011 J. Phys. Chem. A 115 12047
[18] Wang T, Yin H, Wang D Y and Valiev M 2012 J. Phys. Chem. A 116 2371
[19] Xu Y, Wang T and Wang D Y 2012 J. Chem. Phys. 137 184501
[20] Xu Y, Zhang J and Wang D Y 2015 J. Chem. Phys. 142 244505
[21] Li C, Niu M, Liu P, Li Y and Wang D Y 2017 Chin. Phys. B 26 103401
[22] Shaik S, Schlegel H B and Wolfe S 1992 Theoretical Aspects of Physical Organic Chemistry (New York:Wiley) p. 239
[23] Gázquez J L 1997 J. Phys. Chem. A 101 8967
[24] Marshall B W and Moelwyn-Hughes E A 1965 J. Chem. Soc. 1312 7119
[25] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[26] Valiev M, Garrett B C, Tsai M K, Kowalski K, Kathmann S M, Schenter G K and Dupuis M 2007 J. Chem. Phys. 127 051102
[27] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[28] Zhao Y and Truhlar D G 2004 J. Phys. Chem. A 108 6908
[29] Fox T and Kollman P A 1998 J. Phys. Chem. B 102 8070
[30] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[31] Sheppard D, Terrell R and Henkelman G 2008 J. Chem. Phys. 128 134106
[32] Gonzales J M, Sidney Cox Ⅲ R, Brown S T, Allen W D and Schaefer Ⅲ H F 2001 J. Phys. Chem. A 105 11327
[33] Eaton G, Pena-Nuñez A S and Symons M C R 1988 Faraday Discuss. Chem. Soc. 85 237
[34] Ferrario M, McDonald I R and Symons M C R 1992 Mol. Phys. 77 617
[35] Desiraju G R and Steiner T 2001 The Weak Hydrogen Bond:In Structural Chemistry and Biology (Oxford:Oxford University Press) p. 10
[36] Dunlap B I, Connolly J W D and Sabin J R 1979 J. Chem. Phys. 71 3396
[37] Safi B, Choho K and Geerlings P 2001 J. Phys. Chem. A 105 591
[38] Hine J and Mookerjee P K 1975 J. Org. Chem. 40 292
[39] Pliego J R and Riveros J M 2000 Chem. Phys. Lett. 332 597
[1] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[2] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[3] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[4] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[5] Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
Yong Zhou(周勇), Yun-Kun Wang(王云坤), Xiao-Fei Wang(王晓菲), Yu-Jin Zhang(张玉瑾), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(8): 083102.
[6] Combined multi-level quantum mechanics theories and molecular mechanics study of water-induced transition state of OH-+CO2 reaction in aqueous solution
Chen Li(李琛), Meixing Niu(牛美兴), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2017, 26(10): 103401.
[7] Accurate double many-body expansion potential energy surface of HS2(A2A') by scaling the external correlation
Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Shou-Bao Gao(高守宝), Yuan Zhang(张媛), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2016, 25(5): 053101.
[8] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[9] A statistical model for predicting thermal chemical reaction rate
Lin Zheng-Zhe, Li Wang-Yao, Ning Xi-Jing. Chin. Phys. B, 2014, 23(5): 050501.
[10] Simple statistical model for predicting thermal atom diffusion on crystal surfaces
Yu Wei-Feng, Lin Zheng-Zhe, Ning Xi-Jing. Chin. Phys. B, 2013, 22(11): 116802.
[11] Transition state to mode locking in a passively mode-locked erbium-doped fibre ring laser
Liu Jia-Rui, Xu Wen-Cheng, Luo Zhi-Chao, Luo Ai-Ping, Yin Hai-Sen. Chin. Phys. B, 2011, 20(5): 054203.
[12] Solvent effects on the S0S2 absorption spectra of β-carotene
Liu Wei-Long, Wang De-Min, Zheng Zhi-Ren, Li Ai-Hua, Su Wen-Hui. Chin. Phys. B, 2010, 19(1): 013102.
[13] Solvent and electric field dependence of the photocurrent generation in donor:acceptor blend system
Zhou Yin-Hua, Yang Zhong-Feng, Wu Wei-Cai, Xia Hai-Jian, Wen Shan-Peng, Tian Wen-Jing. Chin. Phys. B, 2007, 16(7): 2136-2141.
[14] Solvent effects on optical properties of a newly synthesized two-photon polymerization initiator: BPYPA
Guo Ya-Hui, Sun Yuan-Hong, Tao Li-Min, Zhao Ke, Wang Chuan-Kui. Chin. Phys. B, 2005, 14(11): 2202-2207.
No Suggested Reading articles found!