Please wait a minute...
Chinese Physics, 2007, Vol. 16(7): 2136-2141    DOI: 10.1088/1009-1963/16/7/057
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Solvent and electric field dependence of the photocurrent generation in donor:acceptor blend system

Zhou Yin-Hua(周印华), Yang Zhong-Feng(杨中锋), Wu Wei-Cai(吴伟才), Xia Hai-Jian(夏海建), Wen Shan-Peng(温善鹏), and Tian Wen-Jing (田文晶)
Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, Changchun 130012, China
Abstract  This paper reports that the blend films of poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV) and N,N'-bis(1-ethylpropyl)-3,4: 9,10-perylene bis (tetracarboxyl diimide) (EP-PDI) with the weight ratio of 1:2.5 have been prepared by spin-coating from chloroform (CF) and chlorobenzene (CB) solutions respectively. The absorption spectra and the morphology of the blend films show that large crystal-like EP-PDI aggregates are formed in film prepared from CB solution, which corresponds to a new absorption shoulder near 590nm, while there is no shoulder around 590\,nm in the UV--Vis absorption spectra of the blend film from CF solution. The electric-field dependence spectra of the photocurrent generation quantum yield of the film from CB solution shows that at weak electric field the EP-PDI aggregates act as more efficient sensitizers, but at strong electric field the quantum yields become almost invariable over the entire spectral range no matter what the state of EP-PDI, monomer or aggregate. At strong electric field, the photocurrent generation yields of both films from CF and CB solution saturate and their yield spectra become spectrally similar, mentioning that at strong electric field the photoexcitons dissociate efficiently and the free charges are collected by the electrodes almost completely.
Keywords:  solvent effect      morphology      electric field dependence      photocurrent generation  
Received:  01 December 2006      Revised:  10 December 2006      Accepted manuscript online: 
PACS:  73.50.Pz (Photoconduction and photovoltaic effects)  
  61.41.+e (Polymers, elastomers, and plastics)  
  68.55.-a (Thin film structure and morphology)  
  73.61.Ph (Polymers; organic compounds)  
  78.40.Me (Organic compounds and polymers)  
  78.66.Qn (Polymers; organic compounds)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No 2002CB613401), the National Natural Science Foundation of China (Grant Nos 20474023 and 50673035), the Program for Changjiang Scholars and Innovative Research Tea

Cite this article: 

Zhou Yin-Hua(周印华), Yang Zhong-Feng(杨中锋), Wu Wei-Cai(吴伟才), Xia Hai-Jian(夏海建), Wen Shan-Peng(温善鹏), and Tian Wen-Jing (田文晶) Solvent and electric field dependence of the photocurrent generation in donor:acceptor blend system 2007 Chinese Physics 16 2136

[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[4] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[5] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[6] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[7] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[8] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[9] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[10] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[11] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[12] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[13] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[14] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[15] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
No Suggested Reading articles found!