Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127101    DOI: 10.1088/1674-1056/27/12/127101
Special Issue: TOPICAL REVIEW — Physics research in materials genome
TOPICAL REVIEW—Physics research in materials genome Prev   Next  

Theoretical design of multifunctional half-Heusler materials based on first-principles calculations

Xiuwen Zhang(张秀文)
Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
Abstract  

The family of ABX half-Heusler materials, also called filled-tetrahedral structures, is a special class of ternary compounds hosting a variety of material functionalities including thermoelectricity, topological insulation, magnetism, transparent conductivity and superconductivity. This class of compounds can be derived from two substitution approaches, i.e., from Heusler materials by removing a portion of atoms forming ordered vacancies thus becoming half-Heusler, or from tetrahedral zinc blende compounds by adding atoms on the interstitial sites thus become filled-tetrahedral structures. In this paper, we briefly review the substitution approaches for material design along with their application in the design of half-Heusler compounds; then we will review the high-throughput search of new half-Heusler filled-tetrahedral structures and the study of their physical properties and functionalities.

Keywords:  density functional theory      high-throughput materials prediction      half-Heusler      transparent conductor  
Received:  16 May 2018      Revised:  14 September 2018      Published:  05 December 2018
PACS:  71.15.Nc (Total energy and cohesive energy calculations)  
  71.20.Lp (Intermetallic compounds)  
  71.20.Ps (Other inorganic compounds)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11774239), the National Key Research and Development Program of China (Grant No. 2016YFB0700700), the Fund from Shenzhen Science and Technology Innovation Commission (Grant Nos. JCYJ20170412110137562, JCYJ20170818093035338, and ZDSYS201707271554071), the Natural Science Foundation of Shenzhen University (Grant No. 827-000242), the High-End Researcher Startup Funds of Shenzhen University (Grant No. 848-0000040251), and the Supporting Funds from Guangdong Province for 1000 Talents Plan (Grant No. 85639-000005).

Corresponding Authors:  Xiuwen Zhang     E-mail:  zhxw99@gmail.com

Cite this article: 

Xiuwen Zhang(张秀文) Theoretical design of multifunctional half-Heusler materials based on first-principles calculations 2018 Chin. Phys. B 27 127101

[1] Goldschmidt V M 1926 Skrifter Norske Videnskaps-Akad 8 529
[2] Parthé E 1964 Crystal chemistry of tetrahedral structures (New York: Gordon and Breach)
[3] Sze S M 1969 Physics of Semiconductor Devices (New York: Wiley-Interscience)
[4] Berger L I 1997 Semiconductor Materials (Boca Raton: CRC Press)
[5] Xia J B 2000 Morden semiconductor physics (Beijing: Peking University Press) (in Chinese)
[6] Campbell S A 2007 Fabrication Engineering at the Micro and Nanoscale (New York: Oxford University Press)
[7] Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer-US)
[8] Yu P Y, Cardona M 2010 Fundamentals Semiconductor: Physics, Materials and Properties, 4th edn. (Heidelberg: Springer)
[9] Goodman C H L 1958 J. Phys. Chem. Solids 6 305
[10] Pamplin B R 1960 Nature 188 136
[11] Wang C, Chen S, Yang J H, Lang L, Xiang H J, Gong X G, et al. 2014 Chem. Mater. 26 3411
[12] Jourdan M, Minar J, Braun J, Kronenberg A, Chadov S, Balke B, et al. 2014 Nat. Commun. 5 3974
[13] Ivanshin V A, Litvinova T O, Sukhanov A A, Sokolov D A and Aronson M C 2009 JETP Lett. 90 116
[14] Klimczuk T, Wang C H, Gofryk K, Ronning F, Winterlik J, Fecher G H, et al. 2012 Phys. Rev. B 85 174505
[15] Li C, Lian J S and Jiang Q 2011 Phys. Rev. B 83 235125
[16] Chang G, Xu S Y, Zheng H, Singh B, Hsu C H, Bian G, et al. 2016 Sci. Rep. 6 38839
[17] Wood D M, Zunger A and de Groot R 1985 Phys. Rev. B 31 2570
[18] Hart G L W and Zunger A 2001 Phys. Rev. Lett. 87 275508
[19] Wei S H and Zunger A 1986 Phys. Rev. Lett. 56 528
[20] Carrete J, Li W, Mingo N, Wang S and Curtarolo S 2014 Phys. Rev. X 4 011019
[21] Kimura Y, Zama A and Mishima Y 2006 in 25th Int. Conf. Thermoelectr 2006 ICT 06, pp. 115-119
[22] Miyamoto K, Kimura A, Sakamoto K, Ye M, Cui Y, Shimada K, et al. 2008 Appl. Phys. Express 1 081901
[23] Sakurada S and Shutoh N 2005 Appl. Phys. Lett. 86 082105
[24] Xia Y, Bhattacharya S, Ponnambalam V, Pope A L, Poon S J and Tritt T M 2000 J. Appl. Phys. 88 1952
[25] Yang J, Li H M, Wu T, Zhang W Q, Chen L D and Yang J H 2008 Adv. Funct. Mater. 18 2880
[26] Chadov S, Qi X, Kübler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
[27] Lin H, Wray L A, Xia Y, Xu S, Jia S, Cava R J, et al. 2010 Nat. Mater. 9 546
[28] Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, et al. 2010 Phys. Rev. B 82 125208
[29] Xiao D, Yao Y, Feng W, Wen J, Zhu W, Chen X Q, et al. 2010 Phys. Rev. Lett. 105 096404
[30] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[31] Casper F, Graf T, Chadov S, Balke B and Felser C 2012 Semicond. Sci. Technol. 27 063001
[32] Yan F, Zhang X, Yu Y, Yu L, Nagaraja A, Mason T O, et al. 2015 Nat. Commun. 6 7308
[33] Tafti F F, Fujii T, Juneau-Fecteau A, Rene de Cotret S, Doiron-Leyraud N, Asamitsu A, et al. 2013 Phys. Rev. B 87 184504
[34] Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, et al. 2011 Nat. Mater. 10 521
[35] Vermeer M J D, Zhang X, Trimarchi G, Donakowski M D, Chupas P J, Poeppelmeier K R, et al. 2015 J. Am. Chem. Soc. 137 11383
[36] Du Y, Wan B, Wang D, Sheng L, Duan C G and Wan X 2015 Sci. Rep. 5 14423
[37] Ali R, Murtaza G, Takagiwa Y, Khenata R, Uddin H, Ullah H and Khan S A 2014 Chin. Phys. Lett. 31 047102
[38] Labidi S, Lakel A, Labidi M and Bensalem R 2014 Chin. Phys. Lett. 31 046104
[39] Hayatullah, Murtaza G, Khenata R, Naeem S, Khalid M N and Mohammad S 2013 Chin. Phys. Lett. 30 097101
[40] Huang Y, Sun Q D, Xu W, He Y and Yin W J 2017 Acta Phys. Chim. Sin. 33 0001
[41] Sabir B, Noor N A, Rashid M, Din F U, Ramay S M and Mahmood A 2018 Chin. Phys. B 27 016101
[42] Huang H M, Zhang C K, He Z D, Zhang J, Yang J T and Luo S J 2018 Chin. Phys. B 27 017103
[43] Sohor M A H M, Mustapha M and Kurnia J C 2017 MATEC Web Conf. 131 04003
[44] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[45] Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
[46] Kuan T S, Kuech T F, Wang W I and Wjlkie E L 1985 Phys. Rev. Lett. 54 201
[47] Osorio R, Bernard J E, Froyen S and Zunger A 1992 Phys. Rev. B 45 11173
[48] Zunger A 1997 MRS Bull. 22 20
[49] Connolly J W D, Williams A R 1983 Phys. Rev. B 27 5169
[50] Laks D B, Ferreira L G, Froyen S and Zunger A 1992 Phys. Rev. B 46 12587
[51] Franceschetti A and Zunger A 1999 Nature 402 60
[52] d'Avezac M, Luo J W, Chanier T and Zunger A 2012 Phys. Rev. Lett. 108 027401
[53] Zhang X, Trimarchi G, d'Avezac M and Zunger A 2009 Phys. Rev. B 80 241202
[54] Mahlab E, Volterra V, Low W and Yariv A 1963 Phys. Rev. 131 920
[55] Gai Y, Li J, Li S S, Xia J B and Wei S H 2009 Phys. Rev. Lett. 102 036402
[56] Wei S H 2004 Comput. Mater. Sci. 30 337
[57] Palmer G B, Poeppelmeier K R and Mason T O 1997 Chem. Mater. 9 3121
[58] Zhao S, Kang L, Shen Y, Wang X, Asghar M A, Lin Z, et al. 2016 J. Am. Chem. Soc. 138 2961
[59] McClure E T, Ball M R, Windl W and Woodward P M 2016 Chem. Mater. 28 1348
[60] Xia Z, Ma C, Molokeev M S, Liu Q, Rickert K and Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494
[61] Xia Z and Poeppelmeier K R 2017 Acc. Chem. Res. 50 1222
[62] Cai Z H, Narang P, Atwater H A, Chen S, Duan C G, Zhu Z Q, et al. 2015 Chem. Mater. 27 7757
[63] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, et al. 2017 J. Am. Chem. Soc. 139 2630
[64] Zhang S B, Wei S H and Zunger A 1997 Phys. Rev. Lett. 78 4059
[65] Zhang S B, Wei S H, Zunger A and Katayama-Yoshida H 1998 Phys. Rev. B 57 9642
[66] Bernard J E and Zunger A 1988 Phys. Rev. B 37 6835
[67] Okamoto T, Kojima N, Yamada A, Konagai M, Takahashi K, Nakamura Y, et al. 1992 Jpn. J. Appl. Phys. 31 L143
[68] Johnson V and Jeitschko W 1974 J. Solid State Chem. 11 161
[69] Luo H, Krizan J W, Muechler L, Haldolaarachchige N, Klimczuk T, Xie W, et al. 2015 Nat. Commun. 6 6489
[70] Casper F, Seshadri R and Felser C 2009 Phys. Status Solidi (a) 206 1090
[71] Juza and Hund F 1948 Z. Anorg. Allg. Chem. 257 1
[72] Nowotny H and Bachmayer K 1950 Monatsh. Chem. 81 488
[73] Wei S H and Zunger A 1987 Phys. Rev. B 35 3952
[74] Kushida K, Kaneko Y and Kuriyama K 2004 Phys. Rev. B 70 233303
[75] Trimarchi T and Zunger A 2007 Phys. Rev. B 75 104113
[76] Zhang X, Yu L, Zakutayev A and Zunger A 2012 Adv. Funct. Mater. 22 1425
[77] Schon J C and Jansen M 1996 Angew. Chem. Int. Ed. Engl. 35 1286
[78] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[79] Wu S Q, Ji M, Wang C Z, Nguyen M C, Zhao X, Umemoto K, et al. 2014 J. Phys.: Condens. Matter 26 035402
[80] Pickard C J and Needs R J 2006 Phys. Rev. Lett. 97 045504
[81] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[82] Hautier G, Fischer C C, Jain A, Mueller T and Ceder G 2010 Chem. Mater. 22 3762
[83] Meredig B, Agrawal A, Kirklin S, Saal J E, Doak J W, Thompson A, et al. 2014 Phys. Rev. B 89 094104
[84] Gautier R, Zhang X, Hu L, Yu L, Lin Y, Sunde T O L, et al. 2015 Nat. Chem. 7 308
[85] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[86] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[87] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[88] Zunger A, Perdew J P and Oliver G L 1980 Solid State Commun. 34 933
[89] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[90] Stevanovic V, Lany S, Zhang X and Zunger A 2012 Phys. Rev. B 85 115104
[91] Yu Y G, Zhang X and Zunger A 2017 Phys. Rev. B 95 085201
[92] Inorganic Crystal Structure Database, Fachinformationszentrum Karlsruhe, Germany 2006
[93] Trimarchi G, Zhang X, Vermeer M J D, Cantwell J and Poeppelmeier K R, Zunger A 2015 Phys. Rev. B 92 165103
[94] Zakutayev A, Zhang X, Nagaraja A, Yu L, Lany S, Mason T O, et al. 2013 J. Am. Chem. Soc. 135 10048
[95] Yu L and Zunger A 2012 Phys. Rev. Lett. 108 068701
[96] Hedin L 1965 Phys. Rev. A 139 796
[97] Ottaviani G, Canali C, Nava F and Mayer J W 1973 J. Appl. Phys. 44 2917
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[6] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[7] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[8] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[9] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[10] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[11] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[12] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[13] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[14] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[15] Computational screening of doping schemes forLiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
No Suggested Reading articles found!