Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124704    DOI: 10.1088/1674-1056/27/12/124704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position

Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财)
Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  

Molecular dynamics simulations have been performed to elucidate the influence of exit position on a dense granular flow in a two-dimensional channel. The results show that the dense flow rate remains constant when the exit is far from the channel wall and increases exponentially when the exit moves close to the lateral position. Beverloo's law proves to be successful in describing the relation between the dense flow rate and the exit size for both the center and the lateral exits. Further simulated results confirm the existence of arch-like structure of contact force above the exit. The effective exit size is enlarged when the exit moves from the center to the lateral position. As compared with the granular flow of the center exit, both the vertical velocities of the grains and the flow rate increase for the lateral exit.

Keywords:  granular materials      dense granular flow      molecular dynamics simulations  
Received:  25 July 2018      Revised:  19 September 2018      Accepted manuscript online: 
PACS:  47.57.Gc (Granular flow)  
  45.70.Mg (Granular flow: mixing, segregation and stratification)  
  75.40.Mg (Numerical simulation studies)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11574153).

Corresponding Authors:  Decai Huang     E-mail:  hdc@njust.edu.cn

Cite this article: 

Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财) Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position 2018 Chin. Phys. B 27 124704

[1] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[2] Bursik M, Patra A, Pitman E B, Nichita C, Macias J L, Saucedo R and Girina O 2005 Rep. Prog. Phys. 68 271
[3] Denisov D V, Lörinca K A, Uhi J T, Dahmen K A and Schall P 2016 Nat. Commum. 7 10641
[4] Huang D C, Lu M, Sen S, Sun M, Feng Y D and Yang A N 2013 Eur. Phys. J. E 36 41
[5] Shi Q, Sun G, Hou M Y and Lu K Q 2007 Phys. Rev. E 75 061302
[6] Wang W G, Zhou Z Z, Zong J and Hou M Y 2017 Chin. Phys. B 26 044501
[7] Thomas C C and Durain D J 2015 Phys. Rev. Lett. 114 178001
[8] Gella D, Maza D, Zuriguel I, Ashour A, Arévalo R and Stannarius R 2017 Phys. Rev. Fluids 2 084304
[9] To K W, Lai P K and Pak H K 2000 Phys. Rev. Lett. 86 71
[10] Fortterre Y and Pouliquen O 2008 Ann. Rev. Fluid Mech. 40 1
[11] Hou M, Chen W, Zhang T, Lu K Q and Chan C K 2003 Phys. Rev. Lett. 91 204301
[12] Mathews J C and Wu W 2016 Powder Technol. 293 3
[13] Perlta J P, Aguirre M A, Géminard J C and Pugnalonis L A 2017 Powder Technol. 311 265
[14] Vanel L and Clément E 1999 Eur. Phys. J. B 11 525
[15] Qadir A, Shi Q F, Liang X W and Sun G 2010 Chin. Phys. B 19 034601
[16] Rubio-largo S M, Janda A, Maza D, Zuriguel I and Hidalgo R C 2015 Phys. Rev. Lett. 114 238002
[17] Zhang X Z, Zhang S, Yang G H, Lin P, Tian Y, Wan J F and Yang L 2016 Phys. Lett. A 380 1301
[18] Beverloo W A, Leniger H A and van de Velde J 1961 Chem. Eng. Sci. 15 260
[19] Janda A, Zuriguel I and Maza D 2012 Phys. Rev. Lett. 108 248001
[20] Benyamine M, Djermane M, Dalloz-Dubrujeaud B and Aussillous P 2014 Phys. Rev. E 90 032201
[21] Zhou Y, Ruyer P and Aussillous P 2015 Phys. Rev. E 92 062204
[22] Wang Y, Lu Y and Ooi J Y 2015 Powder Technol. 282 43
[23] Tang J and Behringer R P 2016 Euro Phys. Lett. 114 34002
[24] Xu C, Wang F L, Wang L P, Qi X S, Shi Q F, Li L S and Zheng N 2018 Powder Technol. 328 7
[25] Serrano D A, Medina A, Chanvarria R, Pliego M and Klapp J 2015 Powder Technol. 286 438
[26] Medina A, Andrade J, Córdova J A and Treviño C 2000 Phys. Lett. A 273 109
[27] Huang D C, Sun G and Lu K Q 2006 Phys. Rev. E 74 061306
[28] Huang D C, Sun G and Lu K Q 2011 Phys. Lett. A 375 3375
[29] Kuwabara G and Kono K 1987 Jpn. J. Appl. Phys. 26 1230
[30] Schäfer J, Dippel S and Wolf D E 1996 J. Phys. I 6 5
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[5] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[6] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[7] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[8] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[9] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[10] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[11] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[12] Ultrasound wave propagation in glass-bead packing under isotropic compression and uniaxial shear
Zhi-Gang Zhou(周志刚), Yi-Min Jiang(蒋亦民), Mei-Ying Hou(厚美瑛). Chin. Phys. B, 2017, 26(8): 084502.
[13] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[14] Diffusion and thermite reaction process of film-honeycomb Al/NiO nanothermite: Molecular dynamics simulations using ReaxFF reactive force field
Hua-Dong Zeng(曾华东), Zhi-Yang Zhu(祝志阳), Ji-Dong Zhang(张吉东), Xin-Lu Cheng(程新路). Chin. Phys. B, 2017, 26(5): 056101.
[15] Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer
Bin Xu(徐斌), Wen-Qiang Lin(林文强), Xiao-Gang Wang(汪小刚), Song-wei Zeng(曾松伟), Guo-Quan Zhou(周国泉), Jun-Lang Chen(陈均朗). Chin. Phys. B, 2017, 26(3): 033103.
No Suggested Reading articles found!